Concurrency Theory and Non-Numerical Approximation

并发理论和非数值近似

基本信息

  • 批准号:
    RGPIN-2015-06466
  • 负责人:
  • 金额:
    $ 1.75万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Both concurrent systems and approximation problems abound in human experience but their fully adequate conceptualization as yet eludes us. Our increasing dependence on ever more complex systems in the management and control of human affairs and activities increases the urgency for developing more adequate and preferable more formal concepts to maintain reliable control over systems we have created. The solution of the problem of correct specification of the design and verification of its behaviour becomes crucial, and a satisfactory conceptual apparatus for rigorous specification and verification becomes essential. The project will explore theoretical issues involved in the formal reasoning about concurrent systems and approximate reasoning. First general aim is to develop a framework, based on the concept of Generalized Causality modelled by Discrete Relational Structures (developed by Janicki and Koutny) and generalization of Mazurkiewicz traces, to support the design and the verification of sophisticated concurrent systems. The second general aim is to strengthen foundations and improve applications of non-numerical approximation and non-numerical ranking techniques. What connects all three topics is methodology, as the scientific method is basically the same, i.e., discrete mathematics, especially set, relation and automata theory and of course formal logic.
并行系统和近似问题在人类经验中都很丰富,但它们的充分概念化至今仍未得到我们的理解。我们在管理和控制人类事务和活动方面越来越依赖越来越复杂的系统,因此迫切需要制定更充分、更可取的更正式的概念,以维持对我们创建的系统的可靠控制。 解决正确规范设计和验证其行为的问题变得至关重要,而一个令人满意的严格规范和验证的概念性设备变得至关重要。 该项目将探索关于并发系统和近似推理的形式推理所涉及的理论问题。第一个总体目标是开发一个框架,该框架基于离散关系结构(由Janicki和Koutny提出)和Mazurkiewicz迹的推广的广义因果关系的概念,以支持复杂并发系统的设计和验证。第二个总体目标是加强非数值逼近和非数值排序技术的基础和改进应用。 连接这三个主题的是方法论,因为科学方法基本上是相同的,即离散数学,特别是集合、关系和自动机理论,当然还有形式逻辑。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Janicki, Ryszard其他文献

Optimal approximations with Rough Sets and similarities in measure spaces

Janicki, Ryszard的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Janicki, Ryszard', 18)}}的其他基金

Concurrency and Approximate Reasoning
并发和近似推理
  • 批准号:
    RGPIN-2020-05715
  • 财政年份:
    2022
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Concurrency and Approximate Reasoning
并发和近似推理
  • 批准号:
    RGPIN-2020-05715
  • 财政年份:
    2021
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Concurrency and Approximate Reasoning
并发和近似推理
  • 批准号:
    RGPIN-2020-05715
  • 财政年份:
    2020
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Concurrency Theory and Non-Numerical Approximation
并发理论和非数值近似
  • 批准号:
    RGPIN-2015-06466
  • 财政年份:
    2019
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Concurrency Theory and Non-Numerical Approximation
并发理论和非数值近似
  • 批准号:
    RGPIN-2015-06466
  • 财政年份:
    2018
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Concurrency Theory and Non-Numerical Approximation
并发理论和非数值近似
  • 批准号:
    RGPIN-2015-06466
  • 财政年份:
    2017
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Concurrency Theory and Non-Numerical Approximation
并发理论和非数值近似
  • 批准号:
    RGPIN-2015-06466
  • 财政年份:
    2015
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Concurrency theory, non-numerical approximation and mereology
并发理论、非数值近似和分体学
  • 批准号:
    36539-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Concurrency theory, non-numerical approximation and mereology
并发理论、非数值近似和分体学
  • 批准号:
    36539-2010
  • 财政年份:
    2013
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual
Concurrency theory, non-numerical approximation and mereology
并发理论、非数值近似和分体学
  • 批准号:
    36539-2010
  • 财政年份:
    2012
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Research Grant
Non-Born-Oppenheimer Effects in the Framework of Multicomponent Time-Dependent Density Functional Theory
多分量时变密度泛函理论框架中的非玻恩奥本海默效应
  • 批准号:
    2415034
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
  • 批准号:
    24K06777
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
  • 批准号:
    2420029
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Non-Abelian Hodge Theory and Transcendence
非阿贝尔霍奇理论与超越
  • 批准号:
    2401383
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Sensing Beyond Barriers via Non-Linearities: Theory, Algorithms and Applications
通过非线性传感超越障碍:理论、算法和应用
  • 批准号:
    MR/Y003926/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Fellowship
Collaborative Research: Advances in the Theory and Practice of Non-Euclidean Statistics
合作研究:非欧几里得统计理论与实践的进展
  • 批准号:
    2311058
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
Non-Perturbative Methods in Field Theory and Many-Body Physics
场论和多体物理中的非微扰方法
  • 批准号:
    2310283
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Continuing Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
  • 批准号:
    2328867
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Standard Grant
Development of effective and accurate non-conventional solution methods for shape inverse problems: theory and numerics
开发有效且准确的形状反问题非常规求解方法:理论和数值
  • 批准号:
    23K13012
  • 财政年份:
    2023
  • 资助金额:
    $ 1.75万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了