Dirichlet L-functions, Erdos-Kac theorems, and applications to number theory

Dirichlet L 函数、Erdos-Kac 定理以及在数论中的应用

基本信息

  • 批准号:
    RGPIN-2016-03756
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Number theory is one of the most ancient fields of mathematics, often having unexpected application to the real world (such as cryptography and acoustics) as well as other fields of math. Analytic number theory revolves around the single central theme of using the techniques of analysis (such as calculus and complex numbers) to establish information about numbers (such as prime numbers and special sequences). My research involves three aspects of this central theme: zeros of L-functions, normal distribution theorems, and exponential sums. The distribution of prime numbers is intimately connected to the complex numbers for which certain functions, called L-functions, take 0 as a value. Very little is known about the relationships between the locations of these zeros; for example, can the average of two zeros ever be a third zero? My research will attempt to show that coincidences of this sort never occur. The better we understand these zeros, the more we will be able to determine which sets of numbers contain more prime numbers than other sets, when we group the numbers according to their remainder upon division by some fixed integer. The normal distribution (or bell curve) is a smooth approximation to a wide variety of data sets, and thus has central importance in both statistics and probability. Surprisingly, many data sets coming from number theory are also approximated by bell curves; for example, picking a large number at random and counting its prime factors results in an approximately normal distribution. My research will greatly expand the types of statistics arising from number theory that have been shown to be approximated by normal distributions. An exponential sum is the result of adding together many complex numbers, each of which sits on the same circle, at positions determined by the set of numbers we are ultimately trying to study. The better we understand these exponential sums (how large they are, whether there is any long-term trend), the more we can say about the set of numbers the exponential sum is constructed from. My research aims to strengthen our existing knowledge about various types of exponential sums, all for the purpose of pushing old research projects in novel directions.
数论是最古老的数学领域之一,经常在现实世界(如密码学和声学)以及其他数学领域有意想不到的应用。解析数论围绕一个中心主题,即使用分析技术(如微积分和复数)来建立有关数的信息(如质数和特殊序列)。我的研究涉及到这一中心主题的三个方面:L函数的零点、正态分布定理和指数和。 素数的分布与某些称为L函数的函数以0为值的复数密切相关。人们对这些零的位置之间的关系知之甚少;例如,两个零的平均值会是第三个零吗?我的研究将试图证明,这种巧合永远不会发生。我们对这些零理解得越好,当我们根据数字除以某个固定整数时的余数对数字进行分组时,我们就越能确定哪些数字集比其他集合包含更多的质数。 正态分布(或钟形曲线)是对各种数据集的平滑近似,因此在统计学和概率中都具有核心重要性。令人惊讶的是,许多来自数论的数据集也是由钟形曲线近似的;例如,随机选取一个大的数字并计算其素因数会得到一个近似正态分布。我的研究将极大地扩展数论产生的统计类型,这些类型已经被证明是由正态分布近似的。 指数和是将许多复数相加的结果,每个复数都位于同一个圆圈上,位置由我们最终试图研究的一组数字确定。我们对这些指数和(它们有多大,是否存在任何长期趋势)理解得越好,我们就越能对构成指数和的数字集有更多的了解。我的研究旨在加强我们现有的关于各种类型的指数和的知识,所有这些都是为了推动旧的研究项目朝着新的方向发展。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Martin, Greg其他文献

The Adolescent Cannabis Problems Questionnaire (CPQ-A): Psychometric properties
  • DOI:
    10.1016/j.addbeh.2006.03.001
  • 发表时间:
    2006-12-01
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Martin, Greg;Copeland, Jan;Swift, Wendy
  • 通讯作者:
    Swift, Wendy
The role of small ground-foraging mammals in topsoil health and biodiversity: Implications to management and restoration.
Flavone and Hydroxyflavones Are Ligands That Bind the Orphan Nuclear Receptor 4A1 (NR4A1).
  • DOI:
    10.3390/ijms24098152
  • 发表时间:
    2023-05-02
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Lee, Miok;Upadhyay, Srijana;Mariyam, Fuada;Martin, Greg;Hailemariam, Amanuel;Lee, Kyongbum;Jayaraman, Arul;Chapkin, Robert S.;Lee, Syng-Ook;Safe, Stephen
  • 通讯作者:
    Safe, Stephen
Everything you need to know about deresuscitation.
  • DOI:
    10.1007/s00134-022-06761-7
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    38.9
  • 作者:
    Malbrain, Manu L. N. G.;Martin, Greg;Ostermann, Marlies
  • 通讯作者:
    Ostermann, Marlies
Barriers and facilitators to cannabis treatment
  • DOI:
    10.1111/j.1465-3362.2011.00313.x
  • 发表时间:
    2012-05-01
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Gates, Peter;Copeland, Jan;Martin, Greg
  • 通讯作者:
    Martin, Greg

Martin, Greg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Martin, Greg', 18)}}的其他基金

Dirichlet L-functions, Erdos-Kac theorems, and applications to number theory
Dirichlet L 函数、Erdos-Kac 定理以及在数论中的应用
  • 批准号:
    RGPIN-2016-03756
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Dirichlet L-functions, Erdos-Kac theorems, and applications to number theory
Dirichlet L 函数、Erdos-Kac 定理以及在数论中的应用
  • 批准号:
    RGPIN-2016-03756
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Dirichlet L-functions, Erdos-Kac theorems, and applications to number theory
Dirichlet L 函数、Erdos-Kac 定理以及在数论中的应用
  • 批准号:
    RGPIN-2016-03756
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Dirichlet L-functions, Erdos-Kac theorems, and applications to number theory
Dirichlet L 函数、Erdos-Kac 定理以及在数论中的应用
  • 批准号:
    RGPIN-2016-03756
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Dirichlet L-functions, Erdos-Kac theorems, and applications to number theory
Dirichlet L 函数、Erdos-Kac 定理以及在数论中的应用
  • 批准号:
    RGPIN-2016-03756
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Zeros of L-functions, and multiplicative and combinatorial number theory
L 函数的零点以及乘法和组合数论
  • 批准号:
    250190-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Zeros of L-functions, and multiplicative and combinatorial number theory
L 函数的零点以及乘法和组合数论
  • 批准号:
    250190-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Zeros of L-functions, and multiplicative and combinatorial number theory
L 函数的零点以及乘法和组合数论
  • 批准号:
    250190-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Zeros of L-functions, and multiplicative and combinatorial number theory
L 函数的零点以及乘法和组合数论
  • 批准号:
    250190-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Zeros of L-functions, and multiplicative and combinatorial number theory
L 函数的零点以及乘法和组合数论
  • 批准号:
    250190-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

数学物理中精确可解模型的代数方法
  • 批准号:
    11771015
  • 批准年份:
    2017
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目

相似海外基金

Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
  • 批准号:
    2903298
  • 财政年份:
    2027
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Studentship
New substrates and functions for the DYRK protein kinases
DYRK 蛋白激酶的新底物和功能
  • 批准号:
    2894877
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Studentship
Adaptive Artificial Receptors for Biomimetic Functions
仿生功能的自适应人工受体
  • 批准号:
    MR/X023303/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Fellowship
Immunoregulatory functions of appetite controlling brain circuits
食欲控制脑回路的免疫调节功能
  • 批准号:
    BB/Y005694/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Research Grant
New substrates and functions for the DYRK protein kinases
DYRK 蛋白激酶的新底物和功能
  • 批准号:
    BB/Y512527/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Training Grant
Norway. Neuropeptide origins; study of neuropeptide functions in choanoflagellates
挪威。
  • 批准号:
    BB/X018512/1
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Research Grant
NSF PRFB FY 2023: Impact of Environment-Seagrass-Microbe Interactions on Seagrass Stress Response and Ecosystem Functions
NSF PRFB 2023 财年:环境-海草-微生物相互作用对海草应激反应和生态系统功能的影响
  • 批准号:
    2305691
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Fellowship Award
CAREER: Green Functions as a Service: Towards Sustainable and Efficient Distributed Computing Infrastructure
职业:绿色功能即服务:迈向可持续、高效的分布式计算基础设施
  • 批准号:
    2340722
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Continuing Grant
Theory and algorithms for a new class of computationally amenable nonconvex functions
一类新的可计算非凸函数的理论和算法
  • 批准号:
    2416250
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Conference: Modular forms, L-functions, and Eigenvarieties
会议:模形式、L 函数和特征变量
  • 批准号:
    2401152
  • 财政年份:
    2024
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了