Approximate continuity in geomeric modeling

几何建模中的近似连续性

基本信息

  • 批准号:
    RGPIN-2016-03879
  • 负责人:
  • 金额:
    $ 1.6万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Scientific and engineering applications often require an existing object be reproduced as a patchwise surface of designated continuity. Current solutions fail to meet the smoothness criteria of many industrial and scientific applications. The goal of my research is to find acceptable surface reproduction techniques. Previous researchers used G1 continuity as the definition of smooth. Unfortunately, surfaces produced by the G1 schemes can fail to appear visually smooth. In earlier work, I defined eG1 continuity between two patches to mean that adjacent patches share a common boundary, but the angle between the normals of the two patches at a point on the boundary is bounded by a user defined epsilon. By relaxing the G1 continuity conditions to eG1, I have been able to improve patch shape and create visually smoother patch networks. For industrial applications, such small discontinuities are acceptable since the manufacturing process has limited precision.My previous work on approximate continuity was on testing the maximum angle of discontinuity, refining surfaces to reduce the discontinuity, and finding through experiments how large the normal discontinuity can be without creating visual artifacts in shaded images and isophote lines. This was important proof of concept work, and I will now take the next steps. In particular, Bezier and B-spline surfaces are constructed with control points. Enforcing exact continuity constraints puts restrictions on the locations of these control points. The first topic I will investigate will be to determine how much extra freedom we have in the locations of the control points so that neighboring patches have normal discontinuities less than a user specified tolerance. As a first step, I will investigate bounds in the functional domain, and later generalize these results to parametric patches.The second question I will investigate is how to use this additional freedom in the construction of surface patches to improve their shape to meet industrial requirements on the surfaces.The third question I will investigate is to study piecewise polynomial surfaces with gaps between the neighboring patches; i.e., the patches do not meet C0, although there will be a bound on the discontinuity. The mathematical questions here are harder, since C0 continuity provides an association between neighboring patches, allowing us for example to measure discontinuity between normals at points shared between patches. While a Hausdorff metric can provide some level of association between the boundaries of two patches, the Hausdorff distance fails to distinguish between a gap and an overlap, which have very different impacts on manufacturing. The work here will involve determining a metric (or metrics) to distinguish between these two and other cases, and determine conditions on control points that will guarantee approximately C0 joins acceptable to industry.
科学和工程应用通常需要将现有物体复制为具有指定连续性的补丁状表面。目前的解决方案不能满足许多工业和科学应用的平滑标准。我的研究目标是找到可接受的表面复制技术。以前的研究者使用G1连续性作为光滑的定义。不幸的是,G1方案产生的表面在视觉上可能不光滑。在早期的工作中,我定义了两个补丁之间的eG1连续性,这意味着相邻的补丁共享一个共同的边界,但是两个补丁在边界上一点的法线之间的夹角由用户定义的epsilon限定。通过将G1连续性条件放宽到eG1,我已经能够改善斑块形状并创建视觉上更平滑的斑块网络。对于工业应用,这种小的不连续性是可以接受的,因为制造过程的精度有限。我之前关于近似连续性的工作是测试不连续的最大角度,精炼表面以减少不连续,并通过实验发现正常不连续可以有多大,而不会在阴影图像和等影线中产生视觉伪影。这是重要的概念验证工作,现在我将采取下一步措施。特别地,贝塞尔曲面和b样条曲面是用控制点构造的。执行精确的连续性约束对这些控制点的位置施加了限制。我将研究的第一个主题是确定我们在控制点的位置上有多少额外的自由,以便相邻补丁的正常不连续小于用户指定的公差。作为第一步,我将研究函数域的边界,然后将这些结果推广到参数补丁。我要研究的第二个问题是如何在表面贴片的构造中使用这种额外的自由来改善它们的形状,以满足表面上的工业要求。我要研究的第三个问题是研究相邻块之间有间隙的分段多项式曲面;即,斑块不满足C0,尽管在不连续上会有一个界。这里的数学问题更难,因为C0连续性提供了相邻补丁之间的关联,例如允许我们测量补丁之间共享点法线之间的不连续。虽然Hausdorff度量可以在两个补丁的边界之间提供某种程度的关联,但Hausdorff距离无法区分间隙和重叠,这对制造有非常不同的影响。这里的工作将包括确定一个度量(或多个度量)来区分这两种情况和其他情况,并确定控制点上的条件,以保证行业可以接受的大约0连接。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mann, Stephen其他文献

Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model
  • DOI:
    10.1038/nchem.1921
  • 发表时间:
    2014-06-01
  • 期刊:
  • 影响因子:
    21.8
  • 作者:
    Tang, T-Y. Dora;Hak, C. Rohaida Che;Mann, Stephen
  • 通讯作者:
    Mann, Stephen
Artificial morphogen-mediated differentiation in synthetic protocells
  • DOI:
    10.1038/s41467-019-11316-4
  • 发表时间:
    2019-07-25
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Tian, Liangfei;Li, Mei;Mann, Stephen
  • 通讯作者:
    Mann, Stephen
Response-Retaliation Behavior in Synthetic Protocell Communities
In vitro gene expression and enzyme catalysis in bio-inorganic protocells
  • DOI:
    10.1039/c1sc00183c
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Li, Mei;Green, David C.;Mann, Stephen
  • 通讯作者:
    Mann, Stephen
Small-molecule uptake in membrane-free peptide/nucleotide protocells
  • DOI:
    10.1039/c3sm50726b
  • 发表时间:
    2013-01-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Tang, T. -Y. Dora;Antognozzi, Massimo;Mann, Stephen
  • 通讯作者:
    Mann, Stephen

Mann, Stephen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mann, Stephen', 18)}}的其他基金

Approximate continuity in geomeric modeling
几何建模中的近似连续性
  • 批准号:
    RGPIN-2016-03879
  • 财政年份:
    2021
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Approximate continuity in geomeric modeling
几何建模中的近似连续性
  • 批准号:
    RGPIN-2016-03879
  • 财政年份:
    2020
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Approximate continuity in geomeric modeling
几何建模中的近似连续性
  • 批准号:
    RGPIN-2016-03879
  • 财政年份:
    2019
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Approximate continuity in geomeric modeling
几何建模中的近似连续性
  • 批准号:
    RGPIN-2016-03879
  • 财政年份:
    2018
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Approximate continuity in geomeric modeling
几何建模中的近似连续性
  • 批准号:
    RGPIN-2016-03879
  • 财政年份:
    2017
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Surfaces, geometry and 3D finite element meshes
表面、几何形状和 3D 有限元网格
  • 批准号:
    469712-2014
  • 财政年份:
    2014
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Collaborative Research and Development Grants
Design intent in surface modeling
曲面建模的设计意图
  • 批准号:
    138173-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Design intent in surface modeling
曲面建模的设计意图
  • 批准号:
    138173-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Design intent in surface modeling
曲面建模的设计意图
  • 批准号:
    138173-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual
Design intent in surface modeling
曲面建模的设计意图
  • 批准号:
    138173-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Advancing equity in traumatic brain injury care: A stakeholder-informed meeting on screening for traumatic brain injury in underserved populations
促进创伤性脑损伤护理的公平性:关于在服务不足的人群中筛查创伤性脑损伤的利益相关者知情会议
  • 批准号:
    487815
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Miscellaneous Programs
Treatment and Health Continuity Study Using Smartwatch and Exercise Therapy in Patients with Alcohol Use Disorders
使用智能手表和运动疗法对酒精使用障碍患者进行治疗和健康连续性研究
  • 批准号:
    23K07052
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
RP4 LEAP
RP4飞跃
  • 批准号:
    10595904
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
Evaluating Long Term Population Continuity Through Radiocarbon Dating
通过放射性碳测年评估长期人口连续性
  • 批准号:
    2314153
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
    Standard Grant
Supplement for Cloud Computing: Alcohol Use Disorder Treatment Simulation
云计算补充:酒精使用障碍治疗模拟
  • 批准号:
    10827563
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
Salud de tu Espalda Primary Care to Physical Therapy (STEPPT): Mitigating ethnic disparities in access and engagement in spine pain rehabilitation
Salud de tu Espalda 从初级保健到物理治疗 (STEPPT):减少脊椎疼痛康复获取和参与方面的种族差异
  • 批准号:
    10753365
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
Nurse-Led Interventions in Pediatric Critical Care: Training in Pediatric Sleep Health, Delirium, and Multi-Site Research
护士主导的儿科重症监护干预措施:儿科睡眠健康、谵妄和多中心研究培训
  • 批准号:
    10751813
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
Promoting Viral Suppression through the CHAMPS+ Intervention in the Deep South
通过 CHAMPS 干预南部腹地促进病毒抑制
  • 批准号:
    10819823
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
Primary Care Needs for Patients with Vascular Anomalies: Improving Continuity of Care and Care Coordination in Rare Diseases
血管异常患者的初级护理需求:提高罕见疾病护理的连续性和护理协调
  • 批准号:
    10802824
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
Optimizing HEALing in Ohio Communities (OHiO)-Health Equity Supplement
优化俄亥俄州社区 (OHiO) 的治疗 - 健康公平补充
  • 批准号:
    10890393
  • 财政年份:
    2023
  • 资助金额:
    $ 1.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了