Multiscale Modeling of Wind Turbine Wake Effects on Short-term Wind Power Forecasting and Wind Farm Layout Planning

风力发电机尾流效应对短期风电预测和风电场布局规划的多尺度建模

基本信息

  • 批准号:
    RGPIN-2016-04015
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Owing to growing concerns over global warming caused by increasing concentrations of greenhouse gases (e.g., carbon dioxide, methane) resulting from human activity and to rapidly growing demand in energy capacity, there is an urgent need to exploit new resources. In this respect, environmental concerns favour renewable and clean energy sources such as wind energy (extracted using wind turbines). Wind energy is expected to play a significantly increasing role in the generation of electrical power worldwide owing to the fact that it is the most developed and cost effective of the renewable energy sources. However, improving the current power production from wind farms (clusters of wind turbines) requires predictive tools, but unfortunately the current state-of-the-science does not allow tools based on proper physics or theory to be developed. This should not be surprising because the aerodynamics of a wind turbine is extremely complicated, and this complication is further amplified when a number of wind turbines are located close to each other in a wind farm (or, park). To address this deficiency, the objective of this proposal is to develop a high-resolution multiscale numerical modeling framework, in which effects arising from wind shear, from atmospheric turbulence and stratification, and from complex terrain will be included, and effects from wind turbine wakes will also be accounted for by using a new aeroelastic actuator line model. The outputs of the modeling system will be used for short-term (the next 48~72 hours) wind power forecasting for wind farms. In addition, the software system can also be used to maximize power production (or, energy capture) through an optimal wind farm layout design, including environmental impacts from various factors such as noise, shadow flicker and turbulence intensity, and reduce fatigue loading of components of wind turbines in a wind farm under realistic atmospheric conditions. It will be demonstrated how the foundational knowledge base compiled from results produced in the project can be utilized to improve the overall design of wind turbines and wind farms, which we anticipate will be of importance for the future development and utilization of wind energy. In addition, the increase in wind energy utilization impacts the use of other power generation assets (e.g., nuclear, hydro, natural gas) and to properly manage the portfolio of electricity generation assets will require more detailed, accurate and timely information and prediction of wind energy.
由于对人类活动引起的温室气体(如二氧化碳、甲烷)浓度增加而引起的全球变暖日益关注,以及对能源能力的需求迅速增长,迫切需要开发新的资源。在这方面,环境问题有利于可再生和清洁能源,如风能(使用风力涡轮机提取)。由于风能是最发达和最具成本效益的可再生能源,预计它将在全世界的电力生产中发挥越来越大的作用。然而,改善目前风力发电场(风力涡轮机集群)的电力生产需要预测工具,但不幸的是,目前的科学状况不允许开发基于适当物理或理论的工具。这并不令人惊讶,因为风力涡轮机的空气动力学极其复杂,当风电场(或公园)中的多台风力涡轮机彼此靠近时,这种复杂性会进一步放大。 为了解决这一不足,本方案的目标是开发一个高分辨率的多尺度数值模拟框架,其中将包括风切变、大气湍流和层化以及复杂地形的影响,并且还将使用新的气动弹性驱动器线模式来考虑风力机尾迹的影响。建模系统的输出将用于风电场的短期(未来48~72小时)风电功率预测。此外,该软件系统还可以用于通过优化的风电场布局设计(包括噪声、阴影闪烁和湍流强度等各种因素对环境的影响)最大限度地提高发电量(或能量捕获),并减少实际大气条件下风电场中风力涡轮机组件的疲劳负荷。 它将展示如何利用根据项目成果汇编的基础知识库来改进风力涡轮机和风力发电场的总体设计,我们预计这将对未来风能的开发和利用具有重要意义。此外,风能利用率的增加影响了其他发电资产(如核能、水电、天然气)的使用,要妥善管理发电资产组合,将需要更详细、准确和及时的风能信息和预测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lien, FueSang其他文献

Lien, FueSang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lien, FueSang', 18)}}的其他基金

Modeling of Wake Effects on Power Loss, Fatigue Damage and Noise on a Cluster of Wind Turbines
风力发电机组功率损耗、疲劳损坏和噪声的尾流效应建模
  • 批准号:
    RGPIN-2017-03935
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling of Wake Effects on Power Loss, Fatigue Damage and Noise on a Cluster of Wind Turbines
风力发电机组功率损耗、疲劳损坏和噪声的尾流效应建模
  • 批准号:
    RGPIN-2017-03935
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling of Wake Effects on Power Loss, Fatigue Damage and Noise on a Cluster of Wind Turbines
风力发电机组功率损耗、疲劳损坏和噪声的尾流效应建模
  • 批准号:
    RGPIN-2017-03935
  • 财政年份:
    2019
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling of Wake Effects on Power Loss, Fatigue Damage and Noise on a Cluster of Wind Turbines
风力发电机组功率损耗、疲劳损坏和噪声的尾流效应建模
  • 批准号:
    RGPIN-2017-03935
  • 财政年份:
    2018
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Modeling of Wake Effects on Power Loss, Fatigue Damage and Noise on a Cluster of Wind Turbines
风力发电机组功率损耗、疲劳损坏和噪声的尾流效应建模
  • 批准号:
    RGPIN-2017-03935
  • 财政年份:
    2017
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical prediction of wind turbine noise using large eddy simulation
使用大涡模拟的风力涡轮机噪声数值预测
  • 批准号:
    203459-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Numerical prediction of wind turbine noise using large eddy simulation
使用大涡模拟的风力涡轮机噪声数值预测
  • 批准号:
    203459-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Computational modelling of heat transfer in heat exchangers with high Prandtl number fluids
高普朗特数流体热交换器中传热的计算模型
  • 批准号:
    454251-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Engage Grants Program
Numerical prediction of wind turbine noise using large eddy simulation
使用大涡模拟的风力涡轮机噪声数值预测
  • 批准号:
    203459-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
CFD modeling of surge tank degassing process
调压罐脱气过程的 CFD 建模
  • 批准号:
    453186-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Engage Grants Program

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

CAREER: Uncovering Solar Wind Composition, Acceleration, and Origin through Observations, Modeling, and Machine Learning Methods
职业:通过观测、建模和机器学习方法揭示太阳风的成分、加速度和起源
  • 批准号:
    2237435
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Continuing Grant
SHINE: Testing Theories of Coronal Heating and Solar Wind Acceleration with Multi-Messenger Data and Four-Dimension (4D) Forward Modeling
SHINE:利用多信使数据和四维 (4D) 正演模型测试日冕加热和太阳风加速理论
  • 批准号:
    2300452
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
SHINE: Analysis of Ion Kinetic Instabilities in the Solar Wind Observed Near the Sun with Hybrid Modeling and Machine Learning
SHINE:利用混合建模和机器学习分析太阳附近观测到的太阳风中的离子动力学不稳定性
  • 批准号:
    2300961
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
A direct modeling approach to momentum, heat and mass exchange at the ocean-atmosphere interface at high wind speed
高风速下海洋-大气界面动量、热量和质量交换的直接建模方法
  • 批准号:
    2318816
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
ERI: Formation Mechanisms and Modeling of Wake Meandering in Wind Farms
ERI:风电场尾流曲流的形成机制和建模
  • 批准号:
    2136371
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Modeling Coriolis and stability effects on wake dynamics for wind farm flow control
风电场流量控制中尾流动力学的科里奥利力和稳定性影响建模
  • 批准号:
    2226053
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Modeling of parachute opening process by wind tunnel test and structural coupled fluid analysis
通过风洞试验和结构耦合流体分析对降落伞打开过程进行建模
  • 批准号:
    22K04544
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Performance-Based Wind Engineering: Knowledge and Computational Modeling Advances for Collapse Characterization
基于性能的风工程:塌陷表征的知识和计算建模进展
  • 批准号:
    2118488
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Modeling of Wake Effects on Power Loss, Fatigue Damage and Noise on a Cluster of Wind Turbines
风力发电机组功率损耗、疲劳损坏和噪声的尾流效应建模
  • 批准号:
    RGPIN-2017-03935
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
Development of an integrated modeling framework for wind turbine health condition assessment
开发风力涡轮机健康状况评估的集成建模框架
  • 批准号:
    RGPIN-2017-04143
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了