CAREER: Uncovering Solar Wind Composition, Acceleration, and Origin through Observations, Modeling, and Machine Learning Methods

职业:通过观测、建模和机器学习方法揭示太阳风的成分、加速度和起源

基本信息

项目摘要

Thirty-two years after the first sophisticated solar wind ion composition spectrometer was launched on the NASA Ulysses mission, we now have a wealth of information indicating that heavy ions play a key role in solar and heliospheric physical processes. Heavy ions act as important test particles and have unique responses to the environment around them: heavy ion composition is an imperative parameter for tracking the heliospheric structures to their sources on the Sun or to local sources in interplanetary space. As we are entering the new era of modern missions, solar wind science is at a crossroads where the science return from solar wind composition data in understanding of the inner heliosphere and beyond is maximized by integrating data, models, and machine learning techniques. This project is an innovative inter-disciplinary study to combine multiple techniques in understanding the solar wind. The broader impacts of the project include support of an early career woman scientist, support of two graduate students, the creation of annual workshops on “Heavy Ion Composition in the Heliosphere”, and outreach to Ann Arbor and Detroit area high schools.The following scientific questions will be addressed: (1) Where does the solar wind originate?; (2) How is the solar wind accelerated from the corona?; (3) How do the solar wind and heliosphere respond to the evolution of the solar cycle?; and (4) How can we better understand and use the composite solar wind data sources with Machine Learning (ML) and Artificial Intelligence (AI) technology? This research uses available in-situ observations from many instruments across multiple NASA space missions, including: NASA’s Ulysses, ACE, Wind, Parker Solar Probe, and Solar Orbiter. Space-based data will provide global solar context, magnetic field geometry and basic plasma diagnostics of the solar wind source regions. The Potential Field Source Surface (PFSS) model will be used to track the coronal magnetic field from the Sun to the Earth. In addition, ML/AI techniques will be applied to the solar wind composition data to categorize solar wind types more objectively, and to rank their importance by employing multiple ML feature selection algorithms.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第一台精密的太阳风离子成分谱仪在美国宇航局的“重离子使命”中发射32年后,我们现在有大量的信息表明,重离子在太阳和日光层物理过程中发挥着关键作用。重离子作为重要的试验粒子,对周围环境有独特的反应:重离子成分是追踪日光层结构到其太阳源或行星际空间本地源的必要参数。随着我们进入现代任务的新时代,太阳风科学正处于一个十字路口,通过整合数据,模型和机器学习技术,从太阳风成分数据中了解日光层内外的科学回报最大化。这个项目是一个创新的跨学科研究,联合收割机多种技术在理解太阳风。该项目的更广泛影响包括支持一名早期职业女性科学家,支持两名研究生,举办关于“日光层中重离子组成”的年度讲习班,并向安阿伯和底特律地区的高中推广。(2)太阳风是如何从日冕加速的?(3)太阳风和日光层如何对太阳活动周期的演变作出反应?以及(4)如何利用机器学习(ML)和人工智能(AI)技术更好地理解和使用复合太阳风数据源?这项研究使用了NASA多个太空任务中许多仪器的现场观测数据,包括:NASA的太阳能探测器、ACE、Wind、帕克太阳探测器和太阳轨道器。天基数据将提供全球太阳背景、磁场几何形状和太阳风源区的基本等离子体诊断。位场源面(PFSS)模型将用于跟踪从太阳到地球的日冕磁场。此外,ML/AI技术将应用于太阳风组成数据,以更客观地对太阳风类型进行分类,并通过采用多种ML特征选择算法对其重要性进行排名。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Liang Zhao其他文献

Novel imidazolium stationary phase for high-performance liquid chromatography.
用于高效液相色谱的新型咪唑固定相。
  • DOI:
    10.1016/j.chroma.2006.03.016
  • 发表时间:
    2006-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hongdeng Qiu;Shengxiang Jiang;Xia Liu*;Liang Zhao
  • 通讯作者:
    Liang Zhao
The QUENDA-BOT: Autonomous Robot for Screw-Fixing Installation in Timber Building Construction
QUENDA-BOT:木结构建筑中用于螺钉固定安装的自主机器人
Phenotypic effects of the nurse Thylacospermum caespitosum on dependent plant species along regional climate stress gradients
沿区域气候胁迫梯度,袋囊草保育员对依赖植物物种的表型影响
  • DOI:
    10.1111/oik.04512
  • 发表时间:
    2018-02
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Xingpei Jiang;Richard Michalet;Shuyan Chen;Liang Zhao;Xiangtai Wang;Chenyue Wang;Lizhe An;Sa Xiao
  • 通讯作者:
    Sa Xiao
Interannual variability of dimethylsulfide in the Yellow Sea
黄海二甲硫醚的年际变化
  • DOI:
    10.1007/s00343-020-0480-0
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Sijia Wang;Qun Sun;Shuai Li;Jiawei Shen;Qian Liu;Liang Zhao
  • 通讯作者:
    Liang Zhao
Tape-Assisted Photolithographic-Free Microfluidic Chip Cell Patterning for Tumor Metastasis Study
用于肿瘤转移研究的胶带辅助免光刻微流控芯片细胞图案化
  • DOI:
    10.1021/acs.analchem.7b03225
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Liang Zhao;Tengfei Guo;Lirong Wang;Yang Liu;Ganyu Chen;Hao Zhou;Meiqin Zhang
  • 通讯作者:
    Meiqin Zhang

Liang Zhao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Liang Zhao', 18)}}的其他基金

Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 118.45万
  • 项目类别:
    Standard Grant
Travel: NSF Student Travel Support for the 2023 IEEE International Conference on Data Mining (IEEE ICDM 2023)
旅行:2023 年 IEEE 国际数据挖掘会议 (IEEE ICDM 2023) 的 NSF 学生旅行支持
  • 批准号:
    2324784
  • 财政年份:
    2023
  • 资助金额:
    $ 118.45万
  • 项目类别:
    Standard Grant
SHINE: Understanding the Physical Connection of the in-situ Properties and Coronal Origins of the Solar Wind with a Novel Artificial Intelligence Investigation
SHINE:通过新颖的人工智能研究了解太阳风的原位特性和日冕起源的物理联系
  • 批准号:
    2229138
  • 财政年份:
    2022
  • 资助金额:
    $ 118.45万
  • 项目类别:
    Continuing Grant
III: Small: Graph Generative Deep Learning for Protein Structure Prediction
III:小:用于蛋白质结构预测的图生成深度学习
  • 批准号:
    2110926
  • 财政年份:
    2020
  • 资助金额:
    $ 118.45万
  • 项目类别:
    Standard Grant
OAC Core: SMALL: DeepJIMU: Model-Parallelism Infrastructure for Large-scale Deep Learning by Gradient-Free Optimization
OAC 核心:小型:DeepJIMU:通过无梯度优化实现大规模深度学习的模型并行基础设施
  • 批准号:
    2007976
  • 财政年份:
    2020
  • 资助金额:
    $ 118.45万
  • 项目类别:
    Standard Grant
CAREER: Spatial Network Deep Generative Modeling, Transformation, and Interpretation
职业:空间网络深度生成建模、转换和解释
  • 批准号:
    2113350
  • 财政年份:
    2020
  • 资助金额:
    $ 118.45万
  • 项目类别:
    Continuing Grant
CRII: III: Interpretable Models for Spatio-Temporal Event Forecasting using Social Sensors
CRII:III:使用社交传感器进行时空事件预测的可解释模型
  • 批准号:
    2103745
  • 财政年份:
    2020
  • 资助金额:
    $ 118.45万
  • 项目类别:
    Standard Grant
CAREER: Spatial Network Deep Generative Modeling, Transformation, and Interpretation
职业:空间网络深度生成建模、转换和解释
  • 批准号:
    1942594
  • 财政年份:
    2020
  • 资助金额:
    $ 118.45万
  • 项目类别:
    Continuing Grant
OAC Core: SMALL: DeepJIMU: Model-Parallelism Infrastructure for Large-scale Deep Learning by Gradient-Free Optimization
OAC 核心:小型:DeepJIMU:通过无梯度优化实现大规模深度学习的模型并行基础设施
  • 批准号:
    2106446
  • 财政年份:
    2020
  • 资助金额:
    $ 118.45万
  • 项目类别:
    Standard Grant
III: Small: Deep Generative Models for Temporal Graph Generation and Interpretation
III:小:用于时间图生成和解释的深度生成模型
  • 批准号:
    2007716
  • 财政年份:
    2020
  • 资助金额:
    $ 118.45万
  • 项目类别:
    Standard Grant

相似海外基金

Uncovering the evolutionary history and significance of Fibonacci spirals in vascular plants
揭示维管植物中斐波那契螺旋的进化历史和意义
  • 批准号:
    EP/Y037138/1
  • 财政年份:
    2024
  • 资助金额:
    $ 118.45万
  • 项目类别:
    Research Grant
REGULATING THE FLOW: Uncovering How Roots Sense and Respond to Water Availability
调节流量:揭示根部如何感知和响应水的可用性
  • 批准号:
    BB/Z514482/1
  • 财政年份:
    2024
  • 资助金额:
    $ 118.45万
  • 项目类别:
    Fellowship
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316612
  • 财政年份:
    2024
  • 资助金额:
    $ 118.45万
  • 项目类别:
    Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
  • 批准号:
    2316615
  • 财政年份:
    2024
  • 资助金额:
    $ 118.45万
  • 项目类别:
    Standard Grant
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
  • 批准号:
    10676358
  • 财政年份:
    2024
  • 资助金额:
    $ 118.45万
  • 项目类别:
CAREER: Uncovering the role of splicing factors in transcriptional regulation
职业:揭示剪接因子在转录调控中的作用
  • 批准号:
    2339464
  • 财政年份:
    2024
  • 资助金额:
    $ 118.45万
  • 项目类别:
    Continuing Grant
Uncovering the epigenetic face of lung fibrosis for discovery of novel biomarkers and treatments.
揭示肺纤维化的表观遗传面,以发现新的生物标志物和治疗方法。
  • 批准号:
    MR/X032914/1
  • 财政年份:
    2024
  • 资助金额:
    $ 118.45万
  • 项目类别:
    Fellowship
Uncovering the antimicrobial and antibiotic potentiating mechanism of acesulfame-K and maximising its topical therapeutic potential.
揭示安赛蜜的抗菌和抗生素增强机制并最大限度地发挥其局部治疗潜力。
  • 批准号:
    MR/Y001354/1
  • 财政年份:
    2024
  • 资助金额:
    $ 118.45万
  • 项目类别:
    Research Grant
Uncovering the evolutionary patterns of the Aculeata stinger
揭示 Aculeata 毒刺的进化模式
  • 批准号:
    24K18174
  • 财政年份:
    2024
  • 资助金额:
    $ 118.45万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Uncovering the mechanisms through which krill oil increases muscle function in older adults
揭示磷虾油增强老年人肌肉功能的机制
  • 批准号:
    BB/X015998/1
  • 财政年份:
    2024
  • 资助金额:
    $ 118.45万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了