Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
基本信息
- 批准号:RGPIN-2016-04874
- 负责人:
- 金额:$ 2.77万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The advent of Location-Based Services (LBSs), which personalize the information provided according to the position of their users (e.g., geolocated search), has been accompanied by the large-scale collection of their mobility data. On the one hand, these mobility datasets have a high scientific, societal and economical value. On the other hand, learning the location of an individual is one of the greatest threats against his/her privacy due to its strong inference potential and the possibility of deriving a wealth of personal information. In particular in the past, I have designed inference attacks that use the location data of a user to deduce other personal information (such as the points of interests characterizing his/her mobility), to predict his/her future movements or even to perform a de-anonymization attack.
The scope of my research program covers two different contexts in which the location privacy of a user should be protected. The first context corresponds to the situation in which the user is online (i.e., when he/she benefits from a location-based service in real-time). In this setting, I propose to investigate two different approaches whose objective is to enable privacy-preserving LBSs to operate while minimizing the trust assumptions: the local computation approach and the cooperative one. The second context considered is the offline setting, in which the location data of thousands of users has been collected and has to be sanitized before it is released (e.g., before opening or sharing this data). More precisely, during my discovery grant I propose to work on the design of sanitization methods for mobility mining, whose objective is to produce a data structure that can be used to derive generic mobility patterns of the population while hiding individual movements. Finally at the fundamental level, I am deeply interested in how to model and quantify location privacy in a manner that is both meaningful and useful for practitioners who need to assess the privacy risks of processing, sharing and collecting location data. Thus I propose to study how to integrate the semantic dimension in the currently existing location privacy models.
The societal impact of my research program’s outcomes can be important, as they have the potential to improve significantly the privacy situation of users of LBSs. In addition, the solutions developed will act as enablers by helping Canadian companies to implement privacy-preserving LBS. In particular, a major social and economic challenge is to foster the development of LBS while providing sufficient privacy guarantees. Thus, privacy-preserving LBS have to be developed to avoid the transformation of Big Data into Big Brother, and the results of my research program will directly contribute to this. Finally, the research conducted will be done in cooperation with and contribute to the formation of HQP (i.e., PhD and master students).
基于位置的服务(LBS)的出现,根据用户的位置(例如,地理定位搜索)的同时,还大规模收集了他们的流动数据。一方面,这些移动数据集具有很高的科学、社会和经济价值。另一方面,学习一个人的位置是对他/她的隐私的最大威胁之一,由于其强大的推理潜力和获得丰富的个人信息的可能性。特别是在过去,我设计了推理攻击,使用用户的位置数据来推断其他个人信息(例如表征他/她移动性的兴趣点),预测他/她未来的移动,甚至执行去匿名化攻击。
我的研究计划的范围涵盖了两种不同的情况下,用户的位置隐私应该得到保护。第一上下文对应于用户在线的情况(即,当他/她实时受益于基于位置的服务时)。在这种情况下,我建议调查两种不同的方法,其目标是使隐私保护LBS操作,同时最大限度地减少信任的假设:本地计算方法和合作的。所考虑的第二个上下文是离线设置,其中已经收集了数千个用户的位置数据,并且在其被释放之前必须对其进行净化(例如,在打开或共享此数据之前)。更准确地说,在我的发现补助金期间,我建议设计移动挖掘的消毒方法,其目标是产生一种数据结构,可用于导出人口的通用移动模式,同时隐藏个人移动。最后,在基础层面上,我对如何以一种对需要评估处理、共享和收集位置数据的隐私风险的从业者既有意义又有用的方式来建模和量化位置隐私深感兴趣。因此,我建议研究如何在现有的位置隐私模型中集成语义维度。
我的研究项目的结果的社会影响可能是重要的,因为它们有可能显着改善LBS用户的隐私状况。此外,开发的解决方案将通过帮助加拿大公司实施隐私保护LBS来发挥推动作用。特别是,一个主要的社会和经济挑战是促进LBS的发展,同时提供足够的隐私保障。因此,必须开发保护隐私的LBS,以避免大数据转变为老大哥,我的研究项目的结果将直接有助于这一点。最后,所进行的研究将与HQP的形成(即,博士生和硕士生)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gambs, Sébastien其他文献
Gambs, Sébastien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gambs, Sébastien', 18)}}的其他基金
privacy-preserving and ethical analysis of Big Data
大数据的隐私保护和伦理分析
- 批准号:
CRC-2017-00100 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Canada Research Chairs
Privacy-preserving and Ethical Analysis of Big Data
大数据的隐私保护和伦理分析
- 批准号:
CRC-2021-00243 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Canada Research Chairs
Addressing jointly privacy and ethical issues in responsible machine learning
共同解决负责任的机器学习中的隐私和道德问题
- 批准号:
RGPIN-2022-05031 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
- 批准号:
RGPIN-2016-04874 - 财政年份:2021
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Privacy-Preserving And Ethical Analysis Of Big Data
大数据的隐私保护和道德分析
- 批准号:
CRC-2017-00100 - 财政年份:2021
- 资助金额:
$ 2.77万 - 项目类别:
Canada Research Chairs
Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
- 批准号:
RGPIN-2016-04874 - 财政年份:2020
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
privacy-preserving and ethical analysis of Big Data
大数据的隐私保护和伦理分析
- 批准号:
CRC-2017-00100 - 财政年份:2020
- 资助金额:
$ 2.77万 - 项目类别:
Canada Research Chairs
Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
- 批准号:
RGPIN-2016-04874 - 财政年份:2019
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
privacy-preserving and ethical analysis of Big Data
大数据的隐私保护和伦理分析
- 批准号:
CRC-2017-00100 - 财政年份:2019
- 资助金额:
$ 2.77万 - 项目类别:
Canada Research Chairs
privacy-preserving and ethical analysis of Big Data
大数据的隐私保护和伦理分析
- 批准号:
CRC-2017-00100 - 财政年份:2018
- 资助金额:
$ 2.77万 - 项目类别:
Canada Research Chairs
相似国自然基金
空间co-location模式挖掘中的模糊技术研究
- 批准号:61966036
- 批准年份:2019
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
领域驱动空间co-location模式挖掘技术研究
- 批准号:61472346
- 批准年份:2014
- 资助金额:80.0 万元
- 项目类别:面上项目
带不精确概率和约束的co-location挖掘及其可视化研究
- 批准号:61272126
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:面上项目
不确定数据的空间co-location模式挖掘技术研究
- 批准号:61063008
- 批准年份:2010
- 资助金额:23.0 万元
- 项目类别:地区科学基金项目
枢纽港选址及相关问题的算法设计
- 批准号:71001062
- 批准年份:2010
- 资助金额:17.6 万元
- 项目类别:青年科学基金项目
无重复析因设计的散度效应分析
- 批准号:10626037
- 批准年份:2006
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
- 批准号:
RGPIN-2016-04874 - 财政年份:2021
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
- 批准号:
RGPIN-2016-04874 - 财政年份:2020
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
- 批准号:
RGPIN-2016-04874 - 财政年份:2019
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
- 批准号:
RGPIN-2016-04874 - 财政年份:2018
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
- 批准号:
492982-2016 - 财政年份:2018
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
- 批准号:
RGPIN-2016-04874 - 财政年份:2017
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
- 批准号:
492982-2016 - 财政年份:2017
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Protecting Genetic Privacy through Risk Assessment
通过风险评估保护基因隐私
- 批准号:
7492263 - 财政年份:2006
- 资助金额:
$ 2.77万 - 项目类别:
Protecting Genetic Privacy through Risk Assessment
通过风险评估保护基因隐私
- 批准号:
7287366 - 财政年份:2006
- 资助金额:
$ 2.77万 - 项目类别:
CT-ISG: Protecting Location Privacy in Location-Aware Computing: Architectures and Algorithms
CT-ISG:在位置感知计算中保护位置隐私:架构和算法
- 批准号:
0627474 - 财政年份:2006
- 资助金额:
$ 2.77万 - 项目类别:
Continuing Grant