Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
基本信息
- 批准号:RGPIN-2016-04874
- 负责人:
- 金额:$ 2.77万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The advent of Location-Based Services (LBSs), which personalize the information provided according to the position of their users (e.g., geolocated search), has been accompanied by the large-scale collection of their mobility data. On the one hand, these mobility datasets have a high scientific, societal and economical value. On the other hand, learning the location of an individual is one of the greatest threats against his/her privacy due to its strong inference potential and the possibility of deriving a wealth of personal information. In particular in the past, I have designed inference attacks that use the location data of a user to deduce other personal information (such as the points of interests characterizing his/her mobility), to predict his/her future movements or even to perform a de-anonymization attack.******The scope of my research program covers two different contexts in which the location privacy of a user should be protected. The first context corresponds to the situation in which the user is online (i.e., when he/she benefits from a location-based service in real-time). In this setting, I propose to investigate two different approaches whose objective is to enable privacy-preserving LBSs to operate while minimizing the trust assumptions: the local computation approach and the cooperative one. The second context considered is the offline setting, in which the location data of thousands of users has been collected and has to be sanitized before it is released (e.g., before opening or sharing this data). More precisely, during my discovery grant I propose to work on the design of sanitization methods for mobility mining, whose objective is to produce a data structure that can be used to derive generic mobility patterns of the population while hiding individual movements. Finally at the fundamental level, I am deeply interested in how to model and quantify location privacy in a manner that is both meaningful and useful for practitioners who need to assess the privacy risks of processing, sharing and collecting location data. Thus I propose to study how to integrate the semantic dimension in the currently existing location privacy models. ******The societal impact of my research program's outcomes can be important, as they have the potential to improve significantly the privacy situation of users of LBSs. In addition, the solutions developed will act as enablers by helping Canadian companies to implement privacy-preserving LBS. In particular, a major social and economic challenge is to foster the development of LBS while providing sufficient privacy guarantees. Thus, privacy-preserving LBS have to be developed to avoid the transformation of Big Data into Big Brother, and the results of my research program will directly contribute to this. Finally, the research conducted will be done in cooperation with and contribute to the formation of HQP (i.e., PhD and master students).
基于位置的服务(lbs)的出现伴随着大规模的移动数据收集,lbs根据用户的位置提供个性化的信息(例如,地理定位搜索)。一方面,这些移动数据集具有很高的科学、社会和经济价值。另一方面,了解一个人的位置是对他/她隐私的最大威胁之一,因为它具有很强的推断潜力,并且有可能获得丰富的个人信息。特别是在过去,我设计了推理攻击,使用用户的位置数据来推断其他个人信息(例如描述他/她的移动性的兴趣点),预测他/她未来的运动,甚至执行去匿名化攻击。******我的研究计划的范围涵盖了两种不同的情况下,用户的位置隐私应该得到保护。第一个上下文对应于用户在线的情况(即,当他/她实时受益于基于位置的服务时)。在这种情况下,我建议研究两种不同的方法,它们的目标是使保护隐私的lbs能够在最小化信任假设的情况下运行:局部计算方法和合作方法。第二个考虑的上下文是脱机设置,其中已经收集了数千名用户的位置数据,并且必须在发布之前进行消毒(例如,在打开或共享此数据之前)。更准确地说,在我的发现基金期间,我建议设计流动性挖掘的消毒方法,其目标是产生一个数据结构,该数据结构可用于导出人口的一般流动性模式,同时隐藏个人运动。最后,在基础层面上,我对如何以一种对需要评估处理、共享和收集位置数据的隐私风险的从业者既有意义又有用的方式建模和量化位置隐私深感兴趣。因此,笔者提出研究如何将语义维度整合到现有的位置隐私模型中。******我的研究项目结果的社会影响可能是重要的,因为它们有可能显著改善lbs用户的隐私状况。此外,开发的解决方案将作为推动者,帮助加拿大公司实施保护隐私的LBS。特别是,一个重大的社会和经济挑战是在提供足够的隐私保障的同时促进LBS的发展。因此,为了避免大数据变成老大哥,必须开发隐私保护的LBS,而我的研究项目的结果将直接有助于这一点。最后,所进行的研究将与HQP(即博士和硕士学生)合作并为HQP的形成做出贡献。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gambs, Sébastien其他文献
Gambs, Sébastien的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gambs, Sébastien', 18)}}的其他基金
privacy-preserving and ethical analysis of Big Data
大数据的隐私保护和伦理分析
- 批准号:
CRC-2017-00100 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Canada Research Chairs
Privacy-preserving and Ethical Analysis of Big Data
大数据的隐私保护和伦理分析
- 批准号:
CRC-2021-00243 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Canada Research Chairs
Addressing jointly privacy and ethical issues in responsible machine learning
共同解决负责任的机器学习中的隐私和道德问题
- 批准号:
RGPIN-2022-05031 - 财政年份:2022
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
- 批准号:
RGPIN-2016-04874 - 财政年份:2021
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Privacy-Preserving And Ethical Analysis Of Big Data
大数据的隐私保护和道德分析
- 批准号:
CRC-2017-00100 - 财政年份:2021
- 资助金额:
$ 2.77万 - 项目类别:
Canada Research Chairs
Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
- 批准号:
RGPIN-2016-04874 - 财政年份:2020
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
privacy-preserving and ethical analysis of Big Data
大数据的隐私保护和伦理分析
- 批准号:
CRC-2017-00100 - 财政年份:2020
- 资助金额:
$ 2.77万 - 项目类别:
Canada Research Chairs
Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
- 批准号:
RGPIN-2016-04874 - 财政年份:2019
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
privacy-preserving and ethical analysis of Big Data
大数据的隐私保护和伦理分析
- 批准号:
CRC-2017-00100 - 财政年份:2019
- 资助金额:
$ 2.77万 - 项目类别:
Canada Research Chairs
privacy-preserving and ethical analysis of Big Data
大数据的隐私保护和伦理分析
- 批准号:
CRC-2017-00100 - 财政年份:2018
- 资助金额:
$ 2.77万 - 项目类别:
Canada Research Chairs
相似国自然基金
空间co-location模式挖掘中的模糊技术研究
- 批准号:61966036
- 批准年份:2019
- 资助金额:40.0 万元
- 项目类别:地区科学基金项目
领域驱动空间co-location模式挖掘技术研究
- 批准号:61472346
- 批准年份:2014
- 资助金额:80.0 万元
- 项目类别:面上项目
带不精确概率和约束的co-location挖掘及其可视化研究
- 批准号:61272126
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:面上项目
不确定数据的空间co-location模式挖掘技术研究
- 批准号:61063008
- 批准年份:2010
- 资助金额:23.0 万元
- 项目类别:地区科学基金项目
枢纽港选址及相关问题的算法设计
- 批准号:71001062
- 批准年份:2010
- 资助金额:17.6 万元
- 项目类别:青年科学基金项目
无重复析因设计的散度效应分析
- 批准号:10626037
- 批准年份:2006
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
- 批准号:
RGPIN-2016-04874 - 财政年份:2021
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
- 批准号:
RGPIN-2016-04874 - 财政年份:2020
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
- 批准号:
RGPIN-2016-04874 - 财政年份:2019
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
- 批准号:
492982-2016 - 财政年份:2018
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
- 批准号:
RGPIN-2016-04874 - 财政年份:2017
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
- 批准号:
492982-2016 - 财政年份:2017
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Protecting location privacy in online and offline contexts
保护在线和离线环境中的位置隐私
- 批准号:
RGPIN-2016-04874 - 财政年份:2016
- 资助金额:
$ 2.77万 - 项目类别:
Discovery Grants Program - Individual
Protecting Genetic Privacy through Risk Assessment
通过风险评估保护基因隐私
- 批准号:
7492263 - 财政年份:2006
- 资助金额:
$ 2.77万 - 项目类别:
Protecting Genetic Privacy through Risk Assessment
通过风险评估保护基因隐私
- 批准号:
7287366 - 财政年份:2006
- 资助金额:
$ 2.77万 - 项目类别:
CT-ISG: Protecting Location Privacy in Location-Aware Computing: Architectures and Algorithms
CT-ISG:在位置感知计算中保护位置隐私:架构和算法
- 批准号:
0627474 - 财政年份:2006
- 资助金额:
$ 2.77万 - 项目类别:
Continuing Grant