Computer Intensive Methods in Sampling and in Adaptive Contexts

采样和自适应环境中的计算机密集型方法

基本信息

  • 批准号:
    RGPIN-2016-05686
  • 负责人:
  • 金额:
    $ 1.09万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2016
  • 资助国家:
    加拿大
  • 起止时间:
    2016-01-01 至 2017-12-31
  • 项目状态:
    已结题

项目摘要

Fast computing has allowed statisticians to develop new statistical methods that would have been unthinkable before due to the impossibility to use them in practice. One example is the bootstrap. It can be used to compute variance estimates for complicated estimators or construct confidence intervals. The main goal of this research program is to improve the theoretical and practical understanding of these methods to develop sound new statistical procedures. Companies and governments require the best possible information to make the best decisions. Statistics Canada collects important data which are available to researchers who can extract its information for the benefit of society. Unfortunately, some units in the sample do not respond to some of the questions leading to item non-response. To overcome the bias that can result, imputation of these missing observations based on a model is used. Also, using methodology developed in Canada in Rao, Wu & Yue (1992), the data files contain bootstrap weights that allow researchers to assess the variability of estimators such as the population total or median. But these bootstrap weights only reflect the variability from the selection of the sample units, ignoring the extra variability due to imputation. In the last grant, we studied bootstrap methods that can correctly estimate the variance of imputed estimators of a population total. We will study how these methods perform when studying other parameters, such as the median. In particular, we will show that the bootstrap weights approach works for such parameters using the differential properties of statistical functionals. In statistics, a certain methodology is often adapted to a different area. Non-response in survey sampling is similar to dropping-out in longitudinal studies where patients are followed during a certain period and some patients leave the study for whatever reason. We will study bootstrap methods that would be doubly robust in their assessment of the variability of a doubly robust estimator, i.e., an estimator that will work provided that either the data model or the drop-out model is correct. Another common situation for researchers is to estimate the linear relationship between one variable and a number of explanatory variables where not all of them are needed. In that case, a variable selection method is used to choose which ones are really necessary. An important practical problem is to construct a confidence interval for all variables, including those which are left out, that will take into account the model selection step. We are studying the use of bootstrap methods for this problem. These projects will advance statistical methodology. But at least as importantly, they will provide exciting challenges to train the next generation of highly qualified statisticians to teach and do research in universities, as well as work in industry wherever information needs to be extracted from data.
快速计算使统计学家能够开发新的统计方法,这些方法在以前是不可想象的,因为不可能在实践中使用它们。一个例子是bootstrap。它可用于计算复杂估计量的方差估计或构造置信区间。该研究计划的主要目标是提高对这些方法的理论和实践理解,以开发合理的新统计程序。 公司和政府需要最好的信息来做出最好的决策。加拿大统计局收集重要数据,研究人员可以从中提取信息,造福社会。不幸的是,样本中的一些单位没有回答一些问题,导致项目没有回答。为了克服可能导致的偏倚,使用基于模型的这些缺失观察值的插补。此外,使用Rao,Wu & Yue(1992)在加拿大开发的方法,数据文件包含自举权重,允许研究人员评估估计量的可变性,如人口总数或中位数。但这些自助权重仅反映了样本单位选择的变异性,忽略了插补引起的额外变异性。 在上一次研究中,我们研究了自举方法,它可以正确地估计总体总量的插补估计量的方差。我们将研究这些方法在研究其他参数(如中位数)时的表现。特别是,我们将表明,引导权重的方法工程等参数使用的统计泛函的微分特性。 在统计学中,某种方法往往适用于不同的领域。调查抽样中的无应答类似于纵向研究中的脱落,在纵向研究中,患者在一定时期内接受随访,一些患者因任何原因离开研究。我们将研究bootstrap方法,该方法在评估双重稳健估计的变异性时具有双重稳健性,即,一个估计器,只要数据模型或辍学模型是正确的,它就可以工作。 研究人员的另一种常见情况是估计一个变量和许多解释变量之间的线性关系,而不是所有变量都需要。在这种情况下,使用变量选择方法来选择哪些是真正必要的。一个重要的实际问题是为所有变量构建置信区间,包括那些被遗漏的变量,这将考虑到模型选择步骤。我们正在研究如何使用bootstrap方法来解决这个问题。 这些项目将推进统计方法。但至少同样重要的是,它们将为培养下一代高素质的统计学家提供令人兴奋的挑战,以便在大学教学和研究,以及在需要从数据中提取信息的行业工作。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Léger, Christian其他文献

Léger, Christian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Léger, Christian', 18)}}的其他基金

Computer Intensive Methods in Sampling and in Adaptive Contexts
采样和自适应环境中的计算机密集型方法
  • 批准号:
    RGPIN-2016-05686
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Computer Intensive Methods in Sampling and in Adaptive Contexts
采样和自适应环境中的计算机密集型方法
  • 批准号:
    RGPIN-2016-05686
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Computer Intensive Methods in Sampling and in Adaptive Contexts
采样和自适应环境中的计算机密集型方法
  • 批准号:
    RGPIN-2016-05686
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Computer Intensive Methods in Sampling and in Adaptive Contexts
采样和自适应环境中的计算机密集型方法
  • 批准号:
    RGPIN-2016-05686
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Computer intensive methods in adaptive contexts
自适应环境中的计算机密集型方法
  • 批准号:
    39996-2006
  • 财政年份:
    2013
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Computer intensive methods in adaptive contexts
自适应环境中的计算机密集型方法
  • 批准号:
    39996-2006
  • 财政年份:
    2009
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Computer intensive methods in adaptive contexts
自适应环境中的计算机密集型方法
  • 批准号:
    39996-2006
  • 财政年份:
    2008
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Computer intensive methods in adaptive contexts
自适应环境中的计算机密集型方法
  • 批准号:
    39996-2006
  • 财政年份:
    2007
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Computer intensive methods in adaptive contexts
自适应环境中的计算机密集型方法
  • 批准号:
    39996-2006
  • 财政年份:
    2006
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Computer intensive methods in adpative contexts with data mining applications
具有数据挖掘应用的自适应上下文中的计算机密集方法
  • 批准号:
    39996-2001
  • 财政年份:
    2005
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Computer Intensive Methods in Sampling and in Adaptive Contexts
采样和自适应环境中的计算机密集型方法
  • 批准号:
    RGPIN-2016-05686
  • 财政年份:
    2022
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Computer-Intensive Methods for Nonparametric Analysis of Dependent Data
相关数据非参数分析的计算机密集型方法
  • 批准号:
    1914556
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Standard Grant
Computer Intensive Methods in Sampling and in Adaptive Contexts
采样和自适应环境中的计算机密集型方法
  • 批准号:
    RGPIN-2016-05686
  • 财政年份:
    2019
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Computer Intensive Methods in Sampling and in Adaptive Contexts
采样和自适应环境中的计算机密集型方法
  • 批准号:
    RGPIN-2016-05686
  • 财政年份:
    2018
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Computer Intensive Methods in Sampling and in Adaptive Contexts
采样和自适应环境中的计算机密集型方法
  • 批准号:
    RGPIN-2016-05686
  • 财政年份:
    2017
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Computer-Intensive Methods for Nonparametric Analysis of Dependent Data
相关数据非参数分析的计算机密集型方法
  • 批准号:
    1613026
  • 财政年份:
    2016
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Continuing Grant
Computer intensive statistical methods
计算机密集型统计方法
  • 批准号:
    137470-2008
  • 财政年份:
    2015
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Computer intensive methods in adaptive contexts
自适应环境中的计算机密集型方法
  • 批准号:
    39996-2006
  • 财政年份:
    2013
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
Computer-intensive methods for nonparametric time series analysis
非参数时间序列分析的计算机密集型方法
  • 批准号:
    1308319
  • 财政年份:
    2013
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Continuing Grant
Computer intensive statistical methods
计算机密集型统计方法
  • 批准号:
    137470-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 1.09万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了