Dynamics of Functional Differential Equations with Applications in Epidemiology
泛函微分方程动力学及其在流行病学中的应用
基本信息
- 批准号:RGPIN-2016-06134
- 负责人:
- 金额:$ 1.31万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2016
- 资助国家:加拿大
- 起止时间:2016-01-01 至 2017-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Models of the spread of infectious disease can be expressed in many ways, including as ordinary differential equations (ODEs) or as functional differential equations (FDEs). Examples of FDEs include delay differential equations (DDEs) and partial differential equations (PDEs). Often FDE models are direct generalizations of simpler ODE models, including additional features that may be related to the history of the system. The analysis of FDEs has been developed over the last 50 years, but is still much more complicated than the analysis of ODEs.
In generalizing a particular ODE model with an FDE, it is important to determine how the dynamics of the system change. Does the additional structure result in different behaviour from the ODE or not? My work will focus on the global behaviour of these FDEs. A key tool in this work is Lyapunov's Direct Method. This can be thought of as projecting the system onto a high-dimensional bowl and showing that solutions move down the bowl to the bottom, demonstrating that the system is globally asymptotically stable.
Since 2010, there has been great progress on using Lyapunov functionals to determine the global dynamics of DDE and PDE models in epidemiology. The Lyapunov functional that is used can be thought of as being built from the Lyapunov function that works for the associated ODE model, with additional terms added to deal with the system's history. So far, the approach has been used in an ad hoc manner, and has worked on many individual models. I will study the method itself, determining general conditions on the original ODE system and Lyapunov function, under which FDE generalizations admit a Lyapunov functional.
On the other hand, some systems are de-stabilized by the addition of delay, usually through a Hopf bifurcation that requires the real part of a pair of complex eigenvalues to change sign. An interesting example is the SIRS model where a delay in the incidence term has no substantial effect on the dynamics, whereas a delay in the loss-of-immunity term can lead to instability through a Hopf bifurcation. I will study this system and similar systems that show this dichotomy, to gain insight into the questions below.
Why do some delays destabilize a system, while other delays do not?
When does the global stability of an ODE imply the global stability of an associated FDE?
Can we extrapolate from recent successes to build usable methods that allow the existing abstract theory to be applied in practice to systems that are of interest to the research community?
传染病传播的模型可以用多种方式表达,包括常微分方程组(ODE)或泛函微分方程组(FDES)。FDE的例子包括延迟微分方程(DDES)和偏微分方程(PDE)。通常,FDE模型是更简单的ODE模型的直接概括,包括可能与系统历史相关的附加功能。偏微分方程的分析在过去的50年里得到了发展,但仍然比常微分方程组的分析复杂得多。
在用FDE概括特定的常微分方程组模型时,确定系统的动态如何变化是很重要的。额外的结构是否导致了与颂歌不同的行为?我的工作将集中在这些FDE的全球行为上。这项工作中的一个关键工具是李亚普诺夫的直接方法。这可以被认为是将系统投射到一个高维碗上,并表明解决方案沿着碗向下移动到底部,表明系统是全局渐近稳定的。
自2010年以来,在流行病学中使用Lyapunov泛函来确定DDE和PDE模型的全局动力学方面取得了很大的进展。所使用的Lyapunov泛函可以被认为是从为关联的ODE模型工作的Lyapunov函数构建的,并添加了附加的术语来处理系统的历史。到目前为止,这种方法一直在以特别的方式使用,并在许多单独的模型上发挥了作用。我将研究方法本身,确定关于原始常微分方程组和Lyapunov函数的一般条件,在这些条件下,FDE的推广允许Lyapunov泛函。
另一方面,一些系统由于时滞的增加而不稳定,通常是通过Hopf分叉,该分叉需要一对复本征值的实部改变符号。一个有趣的例子是SIRS模型,其中入射项的延迟对动力学没有实质性的影响,而免疫损失项的延迟可以通过Hopf分叉导致不稳定。我将研究这个系统和显示这种二分法的类似系统,以深入了解以下问题。
为什么一些延迟会破坏系统的稳定,而另一些延迟则不会?
一个ODE的全局稳定性何时意味着相关FDE的全局稳定性?
我们能否从最近的成功中推断出构建可用的方法,从而允许现有的抽象理论在实践中应用于研究界感兴趣的系统?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
McCluskey, Christopher其他文献
McCluskey, Christopher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('McCluskey, Christopher', 18)}}的其他基金
Dynamics of Functional Differential Equations with Applications in Epidemiology
泛函微分方程动力学及其在流行病学中的应用
- 批准号:
RGPIN-2016-06134 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Functional Differential Equations with Applications in Epidemiology
泛函微分方程动力学及其在流行病学中的应用
- 批准号:
RGPIN-2016-06134 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Functional Differential Equations with Applications in Epidemiology
泛函微分方程动力学及其在流行病学中的应用
- 批准号:
RGPIN-2016-06134 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Functional Differential Equations with Applications in Epidemiology
泛函微分方程动力学及其在流行病学中的应用
- 批准号:
RGPIN-2016-06134 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Identification and quantification of primary phytoplankton functional types in the global oceans from hyperspectral ocean color remote sensing
- 批准号:
- 批准年份:2022
- 资助金额:160 万元
- 项目类别:
高维数据的函数型数据(functional data)分析方法
- 批准号:11001084
- 批准年份:2010
- 资助金额:16.0 万元
- 项目类别:青年科学基金项目
Multistage,haplotype and functional tests-based FCAR 基因和IgA肾病相关关系研究
- 批准号:30771013
- 批准年份:2007
- 资助金额:30.0 万元
- 项目类别:面上项目
相似海外基金
Dynamics of Functional Differential Equations with Applications in Epidemiology
泛函微分方程动力学及其在流行病学中的应用
- 批准号:
RGPIN-2016-06134 - 财政年份:2021
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Functional Differential Equations with Applications in Epidemiology
泛函微分方程动力学及其在流行病学中的应用
- 批准号:
RGPIN-2016-06134 - 财政年份:2020
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Functional Differential Equations with Applications to Biology and Ecology
泛函微分方程动力学及其在生物学和生态学中的应用
- 批准号:
RGPIN-2015-05686 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Functional Differential Equations with Applications in Epidemiology
泛函微分方程动力学及其在流行病学中的应用
- 批准号:
RGPIN-2016-06134 - 财政年份:2019
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Functional Differential Equations with Applications to Biology and Ecology
泛函微分方程动力学及其在生物学和生态学中的应用
- 批准号:
RGPIN-2015-05686 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Functional Differential Equations with Applications in Epidemiology
泛函微分方程动力学及其在流行病学中的应用
- 批准号:
RGPIN-2016-06134 - 财政年份:2018
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Functional Differential Equations with Applications in Epidemiology
泛函微分方程动力学及其在流行病学中的应用
- 批准号:
RGPIN-2016-06134 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Functional Differential Equations with Applications to Biology and Ecology
泛函微分方程动力学及其在生物学和生态学中的应用
- 批准号:
RGPIN-2015-05686 - 财政年份:2017
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Functional Differential Equations with Applications to Biology and Ecology
泛函微分方程动力学及其在生物学和生态学中的应用
- 批准号:
RGPIN-2015-05686 - 财政年份:2016
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual
Dynamics of Functional Differential Equations with Applications to Biology and Ecology
泛函微分方程动力学及其在生物学和生态学中的应用
- 批准号:
RGPIN-2015-05686 - 财政年份:2015
- 资助金额:
$ 1.31万 - 项目类别:
Discovery Grants Program - Individual