Representation theory of p-adic groups
p进群的表示论
基本信息
- 批准号:489752-2016
- 负责人:
- 金额:$ 2.55万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Alexander Graham Bell Canada Graduate Scholarships - Doctoral
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
No summary - Aucun sommaire
没有总结- Aucun sommaire
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bourgeois, Adèle其他文献
Bourgeois, Adèle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bourgeois, Adèle', 18)}}的其他基金
Representation theory of p-adic groups
p进群的表示论
- 批准号:
489752-2016 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于密度泛函理论金原子簇放射性药物设计、制备及其在肺癌诊疗中的应用研究
- 批准号:82371997
- 批准年份:2023
- 资助金额:48.00 万元
- 项目类别:面上项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
钱江潮汐影响下越江盾构开挖面动态泥膜形成机理及压力控制技术研究
- 批准号:LY21E080004
- 批准年份:2020
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
高阶微分方程的周期解及多重性
- 批准号:11501240
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
四维流形上的有限群作用与奇异光滑结构
- 批准号:11301334
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Strategic construction and refinement of p-adic L-functions based on automorphic representation theory
基于自守表示理论的p进L函数的策略构建与细化
- 批准号:
22K03237 - 财政年份:2022
- 资助金额:
$ 2.55万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Representation and structure theory of p-adic groups via Bruhat-Tits buildings, and applications to cryptography
通过 Bruhat-Tits 建筑物的 p-adic 群的表示和结构理论,以及在密码学中的应用
- 批准号:
RGPIN-2015-06294 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Representation theory of orthogonal p-adic groups
正交p进群的表示论
- 批准号:
542616-2019 - 财政年份:2019
- 资助金额:
$ 2.55万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Representation and structure theory of p-adic groups via Bruhat-Tits buildings, and applications to cryptography
通过 Bruhat-Tits 建筑物的 p-adic 群的表示和结构理论,以及在密码学中的应用
- 批准号:
RGPIN-2015-06294 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Representation theory of p-adic groups
p进群的表示论
- 批准号:
489752-2016 - 财政年份:2018
- 资助金额:
$ 2.55万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
P-adic Representation Theory and Geometry of the Lubin-Tate Tower
鲁宾-泰特塔的P进表示理论和几何
- 批准号:
1748706 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Standard Grant
Representation and structure theory of p-adic groups via Bruhat-Tits buildings, and applications to cryptography
通过 Bruhat-Tits 建筑物的 p-adic 群的表示和结构理论,以及在密码学中的应用
- 批准号:
RGPIN-2015-06294 - 财政年份:2017
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Representation and structure theory of p-adic groups via Bruhat-Tits buildings, and applications to cryptography
通过 Bruhat-Tits 建筑物的 p-adic 群的表示和结构理论,以及在密码学中的应用
- 批准号:
RGPIN-2015-06294 - 财政年份:2016
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual
Representation and structure theory of p-adic groups via Bruhat-Tits buildings, and applications to cryptography
通过 Bruhat-Tits 建筑物的 p-adic 群的表示和结构理论,以及在密码学中的应用
- 批准号:
RGPIN-2015-06294 - 财政年份:2015
- 资助金额:
$ 2.55万 - 项目类别:
Discovery Grants Program - Individual