Gyrokinetic Simulation and Theory of Non-diffusive Transport and Chaotic Flows in Non-Equilibrium Magnetized Plasmas
非平衡磁化等离子体中非扩散输运和混沌流的回旋运动模拟与理论
基本信息
- 批准号:RGPIN-2014-06521
- 负责人:
- 金额:$ 1.82万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The turbulent transport of heat, particles and momentum has an impact on a wide range of plasma phenomena ranging from laboratory magnetic and inertial confinement systems for fusion energy applications, to space weather and plasma astrophysics. A large number of advances in understanding plasma turbulence and transport have been made using analytic theory and numerical simulation, such as nonlinear mode interaction, energy cascades, secondary instabilities, turbulence spreading and the role of sheared flows. Another feature of transport in these systems that are driven from equilibrium, are large fluctuations that exhibit complex spatio-temporal patterns and coherent structures which induce large relative displacements. It is these displacements, and their temporal dependence, that cause departures from the classical, diffusive fluxes commonly described by a local Fick’s law. Instead the non-equilibrated systems evolve according to spatially non-local processes that can exhibit temporal memory and partial coherency. It is phenomena of this type, so-called non-diffusive transport, that is addressed in this proposal within the context of magnetized plasmas containing cross-field pressure and/or current density gradients. Recent theoretical work has suggested that non-diffusive transport properties are connected with chaotic dynamics and that fractional diffusion models are an appropriate theoretical description. Experimental evidence for non-diffusive transport has been documented in controlled temperature gradient experiments in a large linear plasma device (Large Plasma Device (LAPD), Gekelman et al., Rev. Sci. Instrum. 62, 2875 (1991)) and underlying microscopic structures have been found to have universal features related to deterministic chaos. New transport models based on these experimental findings have been formulated based on the fractional Fokker-Planck equation and chaotic advection. One of the main purposes of this investigation is to apply fully nonlinear kinetic simulations to resolve the major question as to whether the underlying microscopic dynamics is indeed chaotic or stochastic in nature and to compare with predictions based on fractional diffusion and chaotic advection. The approach taken is based on 3D gyrokinetic particle simulation in cylindrical geometry including electromagnetic effects applied to thermal transport in magnetized temperature filament experiments and related high current density channels that form magnetic structures know as flux ropes. These non-equilibrium plasma conditions (temperature filaments or current channels) can also form during antenna-launch of large amplitude low frequency plasma normal modes called shear Alfven waves. In all cases the nonlinear evolution of the self-consistent electromagnetic fields as well as the diffusion of charged particles and heat in the LAPD-type plasmas will be analyzed and compared with experiment and theoretical models. The global gyrokinetic simulations use realistic plasma parameters and can follow the evolution on transport time scales. Spatially localized synthetic probes will be developed to generate time series that can be compared to laboratory measurements and individual tagging of particles will allow us to explore microscopic diffusivity in detail. Numerical simulations such as these are key to development of a predictive capability for turbulent transport in a variety of plasma environments. The research experience for trainees, at the leading edge between theory/modeling and experiment, will provide valuable skills and preparation for work in both academic and industrial settings.
热、粒子和动量的湍流传输对从聚变能应用的实验室磁和惯性约束系统到空间天气和等离子体天体物理学等一系列广泛的等离子体现象产生影响。利用解析理论和数值模拟在理解等离子体湍流和输运方面取得了大量进展,如非线性模相互作用、能量级联、二次不稳定性、湍流扩展和剪切流的作用。在这些系统中,从平衡驱动的另一个特点是大的波动,表现出复杂的时空模式和相干结构,引起大的相对位移。正是这些位移,以及它们的时间依赖性,导致偏离经典的,扩散通量通常由当地菲克定律描述。相反,非平衡系统的演变,根据空间非本地的过程,可以表现出时间记忆和部分相干性。这是这种类型的现象,所谓的非扩散传输,这是解决在本提案的磁化等离子体的上下文中包含交叉场的压力和/或电流密度梯度。最近的理论工作表明,非扩散输运性质与混沌动力学和分数扩散模型是一个适当的理论描述。在大型线性等离子体装置(Large Plasma Device(LAPD),Gekelman等人,Rev. Sci.仪器。62,2875(1991))和潜在的微观结构已经被发现具有与确定性混沌相关的普遍特征。新的传输模型的基础上,这些实验结果已制定的分数福克-普朗克方程和混沌平流的基础上。这项调查的主要目的之一是应用完全非线性动力学模拟来解决的主要问题,是否根本的微观动力学确实是混沌或随机的性质,并与预测的基础上分数扩散和混沌平流比较。所采取的方法是基于三维回旋粒子模拟的圆柱形几何形状,包括电磁效应应用于热传输磁化温度灯丝实验和相关的高电流密度通道,形成磁结构称为通量绳。这些非平衡等离子体条件(温度细丝或电流通道)也可以在称为剪切阿尔芬波的大振幅低频等离子体正常模式的天线发射期间形成。在所有情况下,自洽电磁场的非线性演化以及带电粒子和热在LAPD型等离子体中的扩散将进行分析,并与实验和理论模型进行比较。全球gyrokinetic模拟使用现实的等离子体参数,可以遵循运输时间尺度上的演变。将开发空间定位的合成探针,以生成可以与实验室测量结果进行比较的时间序列,并对颗粒进行单独标记,使我们能够详细探索微观扩散率。诸如此类的数值模拟是发展各种等离子体环境中湍流输运预测能力的关键。学员的研究经验,在理论/建模和实验之间的前沿,将提供宝贵的技能和准备工作在学术和工业环境。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sydora, Richard其他文献
Sydora, Richard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sydora, Richard', 18)}}的其他基金
Transport Properties, Pattern Dynamics and Self-Organized States in Magnetized Plasmas
磁化等离子体中的输运特性、模式动力学和自组织态
- 批准号:
RGPIN-2019-05234 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Transport Properties, Pattern Dynamics and Self-Organized States in Magnetized Plasmas
磁化等离子体中的输运特性、模式动力学和自组织态
- 批准号:
RGPIN-2019-05234 - 财政年份:2021
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Transport Properties, Pattern Dynamics and Self-Organized States in Magnetized Plasmas
磁化等离子体中的输运特性、模式动力学和自组织态
- 批准号:
RGPIN-2019-05234 - 财政年份:2020
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Transport Properties, Pattern Dynamics and Self-Organized States in Magnetized Plasmas
磁化等离子体中的输运特性、模式动力学和自组织态
- 批准号:
RGPIN-2019-05234 - 财政年份:2019
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Gyrokinetic Simulation and Theory of Non-diffusive Transport and Chaotic Flows in Non-Equilibrium Magnetized Plasmas
非平衡磁化等离子体中非扩散输运和混沌流的回旋运动模拟与理论
- 批准号:
RGPIN-2014-06521 - 财政年份:2018
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Gyrokinetic Simulation and Theory of Non-diffusive Transport and Chaotic Flows in Non-Equilibrium Magnetized Plasmas
非平衡磁化等离子体中非扩散输运和混沌流的回旋运动模拟与理论
- 批准号:
RGPIN-2014-06521 - 财政年份:2016
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Gyrokinetic Simulation and Theory of Non-diffusive Transport and Chaotic Flows in Non-Equilibrium Magnetized Plasmas
非平衡磁化等离子体中非扩散输运和混沌流的回旋运动模拟与理论
- 批准号:
RGPIN-2014-06521 - 财政年份:2015
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Gyrokinetic Simulation and Theory of Non-diffusive Transport and Chaotic Flows in Non-Equilibrium Magnetized Plasmas
非平衡磁化等离子体中非扩散输运和混沌流的回旋运动模拟与理论
- 批准号:
RGPIN-2014-06521 - 财政年份:2014
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Advanced kinetic simulations and theory of magnetic reconnection
先进的动力学模拟和磁重联理论
- 批准号:
205068-2009 - 财政年份:2013
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Advanced kinetic simulations and theory of magnetic reconnection
先进的动力学模拟和磁重联理论
- 批准号:
205068-2009 - 财政年份:2012
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Frictional fluid dynamics of granular flows; uniting experiments, simulation and theory
颗粒流的摩擦流体动力学;
- 批准号:
EP/X028771/1 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Fellowship
CAREER: Enabling the Accurate Simulation of Multi-Dimensional Core-Level Spectroscopies in Molecular Complexes using Time-Dependent Density Functional Theory
职业:使用瞬态密度泛函理论实现分子复合物中多维核心级光谱的精确模拟
- 批准号:
2337902 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Theory and Simulation of Local Electroneutrality and Ion Atmospheres in Biological Systems
生物系统中局域电中性和离子气氛的理论与模拟
- 批准号:
10736494 - 财政年份:2023
- 资助金额:
$ 1.82万 - 项目类别:
Collaborative Research: Measurement, Simulation, and Theory of Molecular Connectivity Effects on Nanoscale Interfacial Rheology of Glass-Forming Fluids
合作研究:玻璃形成流体纳米级界面流变学的分子连接效应的测量、模拟和理论
- 批准号:
2208260 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Quantum dynamics, entanglement, and computation: theory and simulation algorithms
量子动力学、纠缠和计算:理论和模拟算法
- 批准号:
RGPIN-2020-05607 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
ERI: Theory and Simulation of Photoexcitation Dynamics in 2-Dimensional Materials for Solar Energy Harvesting
ERI:用于太阳能收集的二维材料光激发动力学的理论与模拟
- 批准号:
2138728 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
CAREER: Advancing Theory and Practice of Robust Simulation Analysis Under Input Model Risk
职业:推进输入模型风险下稳健仿真分析的理论和实践
- 批准号:
2246281 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Theory and Simulation of Non-adiabatic Excited State Dynamics in Nanoscale systems
纳米级系统非绝热激发态动力学的理论与模拟
- 批准号:
2154367 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Standard Grant
Theory and Simulation of Liquids, Solutions, and Nucleation Processes
液体、溶液和成核过程的理论和模拟
- 批准号:
RGPIN-2018-04762 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual
Theory and simulation of soft condensed matter.
软凝聚态理论与模拟。
- 批准号:
RGPIN-2019-03970 - 财政年份:2022
- 资助金额:
$ 1.82万 - 项目类别:
Discovery Grants Program - Individual