Nanomechanics and Nanoelectronics for Measurements near Quantum Limits
用于接近量子极限测量的纳米力学和纳米电子学
基本信息
- 批准号:298185-2013
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
New technology has enabled researchers to make movable structures with dimensions only tens of nanometers (hundreds of atoms) in size, called nanomechanical devices. These can form new sensors with unprecedented sensitivity, such as microscopes that detect the magnetic force due a single atom.To reach the sensitivity needed for some applications, the devices are actually almost as sensitive the ultimate limit of sensitivity. Quantum mechanics - the physical laws that govern the behaviour of atoms and molecules - tells us that making a measurement of the motion of a nanomechanical device must change the motion. This "back-action" must ultimately limit how sensitive our measurement can be.Robert Knobel and his team of students and colleagues are working to make nanomechanical devices that are very close to this limit. They do this by making careful electrical measurements of coupled systems, by cooling down the whole system to nearly absolute zero, by making the mechanical systems out of single-atom-thick material.The outcome of this research is useful in two ways: first we want to understand what the limits of mechanical measurement are. What do we have to do in order to have our devices work as well as theoretical physicists predict? Second, making a device this sensitive could enable new real-world applications. Detecting the magnetic force due to a single atom could allow perfect reconstruction of, for instance, a protein, enabling drug discovery and diagnosis.
新技术使研究人员能够制造尺寸只有几十纳米(数百个原子)大小的可移动结构,称为纳米机械设备。这些可以形成具有前所未有的灵敏度的新传感器,例如检测单个原子产生的磁力的显微镜。为了达到某些应用所需的灵敏度,这些设备实际上几乎与灵敏度的极限一样灵敏。量子力学--支配原子和分子行为的物理定律--告诉我们,对纳米机械设备的运动进行测量必须改变运动。这种“反作用”最终必然会限制我们测量的灵敏度。罗伯特·诺贝尔和他的学生和同事团队正在努力制造非常接近这一极限的纳米机械设备。他们通过对耦合系统进行仔细的电学测量,通过将整个系统冷却到接近绝对零度,通过用单原子厚度的材料制造力学系统来做到这一点。这项研究的结果在两个方面很有用:首先,我们想了解力学测量的极限是什么。为了让我们的设备像理论物理学家预测的那样工作,我们必须做些什么?其次,制造如此敏感的设备可以实现新的现实应用。检测单个原子产生的磁力可以完美地重建蛋白质,从而实现药物发现和诊断。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Knobel, Robert其他文献
Kinetics of Lithium Intercalation in TiX2 Single Crystals (X = S, Se, Te) under Hydrostatic Pressure
- DOI:
10.1515/zpch-2014-0662 - 发表时间:
2015-01-01 - 期刊:
- 影响因子:2.5
- 作者:
Knobel, Robert;Behrens, Harald;Horn, Ingo - 通讯作者:
Horn, Ingo
Knobel, Robert的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Knobel, Robert', 18)}}的其他基金
Nanomechanics and Nanoelectronics for Measurements near Quantum Limits
用于接近量子极限测量的纳米力学和纳米电子学
- 批准号:
298185-2013 - 财政年份:2016
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Nanomechanics and Nanoelectronics for Measurements near Quantum Limits
用于接近量子极限测量的纳米力学和纳米电子学
- 批准号:
298185-2013 - 财政年份:2015
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Nanomechanics and Nanoelectronics for Measurements near Quantum Limits
用于接近量子极限测量的纳米力学和纳米电子学
- 批准号:
298185-2013 - 财政年份:2014
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Nanomechanics and Nanoelectronics for Measurements near Quantum Limits
用于接近量子极限测量的纳米力学和纳米电子学
- 批准号:
298185-2013 - 财政年份:2013
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Quantum measurement limits in nanoscale mechanics and electronics
纳米机械和电子学中的量子测量极限
- 批准号:
298185-2008 - 财政年份:2012
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Quantum measurement limits in nanoscale mechanics and electronics
纳米机械和电子学中的量子测量极限
- 批准号:
298185-2008 - 财政年份:2011
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Quantum measurement limits in nanoscale mechanics and electronics
纳米机械和电子学中的量子测量极限
- 批准号:
298185-2008 - 财政年份:2010
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Quantum measurement limits in nanoscale mechanics and electronics
纳米机械和电子学中的量子测量极限
- 批准号:
298185-2008 - 财政年份:2009
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Quantum measurement limits in nanoscale mechanics and electronics
纳米机械和电子学中的量子测量极限
- 批准号:
298185-2008 - 财政年份:2008
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Integrated studies of electronics and mechanics at the nanoscale
纳米尺度电子学和机械学的综合研究
- 批准号:
298185-2004 - 财政年份:2007
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Programmable Ferroelectric Nanoelectronics for In-memory Computing
用于内存计算的可编程铁电纳米电子学
- 批准号:
DP240102137 - 财政年份:2024
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Projects
FMRG: Bio: Manufacturing Ultra-High-Density DNA-Enabled Nanoelectronics Systems
FMRG:生物:制造超高密度 DNA 纳米电子系统
- 批准号:
2328217 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Collaborative Research: IRES Track I: US/France Multidisciplinary Collaboration in Nanoelectronics, Quantum Materials and Next-Generation Computing
合作研究:IRES 第一轨:美国/法国在纳米电子学、量子材料和下一代计算方面的多学科合作
- 批准号:
2246358 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Nanoelectronics to study exosome circuitry and their role in neuroregeneration
纳米电子学研究外泌体电路及其在神经再生中的作用
- 批准号:
10713428 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Collaborative Research: IRES Track I: US/France Multidisciplinary Collaboration in Nanoelectronics, Quantum Materials and Next-Generation Computing
合作研究:IRES 第一轨:美国/法国在纳米电子学、量子材料和下一代计算方面的多学科合作
- 批准号:
2246357 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Standard Grant
Quantum Terahertz Nanoelectronics (QuanTeraN)
量子太赫兹纳米电子学 (QuanTeraN)
- 批准号:
EP/X013456/1 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Research Grant
Formation Processes of Heavy Elements in the Early Universe Elucidated by Superconducting Nanoelectronics, Large-Scale Numerical Simulations, and Data Science
通过超导纳米电子学、大规模数值模拟和数据科学阐明早期宇宙中重元素的形成过程
- 批准号:
23K20035 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Fund for the Promotion of Joint International Research (International Leading Research )
HETEROGENEOUS MATERIAL AND TECHNOLOGICAL PLATFORM FOR A NEW DOMAIN OF POWER NANOELECTRONICS (NANOMAT)
电力纳米电子学新领域 (NANOMAT) 的异质材料和技术平台
- 批准号:
10058065 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
EU-Funded
AIIIBV Molecular Beam Epitaxial structures and devices for photonics, nanoelectronics, spintronics and quantum computing.
AIIIBV 用于光子学、纳米电子学、自旋电子学和量子计算的分子束外延结构和器件。
- 批准号:
RGPIN-2018-05345 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Aging and Reliability Effects Modelling and Mitigation in Nanoelectronics and Sensors
纳米电子学和传感器中的老化和可靠性影响建模和缓解
- 批准号:
RGPIN-2019-04016 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual