Quantum Terahertz Nanoelectronics (QuanTeraN)
量子太赫兹纳米电子学 (QuanTeraN)
基本信息
- 批准号:EP/X013456/1
- 负责人:
- 金额:$ 66.88万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The UK is one of the leading countries in Terahertz (THz) science and technology. At the moment, there are several research groups and companies (QMC Instruments, Teraview, Laser Quantum etc.) across the country specialising in research and development of THz sources, detectors as well as applications for fundamental research and commercial use. Even though there is a strong THz community in the UK, there are no links between THz and Quantum Technology research. Quantum technology is right now at the forefront of UK's research and innovation. With investments totalling up to £1bn [1], elusive quantum theories are transformed into new technologies, in the so called 'second quantum revolution'. Qubits, the fundamental building blocks of all quantum technologies, have come in an abundance of competing flavours ranging from superconducting, flying, topological to atomic and optical. Despite the large variation, all these qubits have one thing in common: the need of a robust, reliable and scalable technology for their generation, detection and manipulation. Hybrid, high-frequency optoelectronic qubits hold a great promise for robustness and scalability. In this project we will develop the next generation of THz optoelectronic sources with a particular focus on their energy efficiency. Standard optoelectronic devices are at a disadvantage for using them together with quantum circuits due to their high operation energy and low optical-to-electrical conversion efficiency. This, unfortunately, results into an unwanted dissipated heat and when it is put in the proximity of a quantum circuit it can seriously disrupt any quantum information carried by that circuit. The proposed sources will be at least 20 to 50 times more efficient and can used in the future alongside quantum nanoelectronic circuits to generate ultrafast, picosecond qubits without disrupting the quantum nature of neighbouring quantum circuits. In addition, the novel optoelectronic devices developed in this project can be used to study fundamental quantum mechanical interactions at picosecond and sub-picosecond timescales. This research will be undertaken at the Department of Electronic and Nanoscale Engineering at the James Watt School of Engineering, University of Glasgow. The duration of this project is 24 months and it will involve advanced nanofabrication at the James Watt Nanofabrication Centre and the development of an optoelectronic setup. This setup will have capabilities of performing ultrafast pump-probe measurements at near infrared wavelengths. Through this setup we will generate energy efficient picosecond (THz) pulses, measure their absolute efficiency and compare this with standard commercial devices. This project benefits from collaborations and support from research groups at the Institute Neel, CNRS, France and QMC Instruments. The results from this research will be a step forward towards more robust and scalable qubits as well as accessing ultrafast quantum dynamics.
英国是太赫兹(THz)科学技术的领先国家之一。目前,全国有几个研究小组和公司(QMC Instruments, Teraview, Laser Quantum等)专门从事太赫兹源,探测器以及基础研究和商业应用的研究和开发。尽管英国有一个强大的太赫兹社区,但太赫兹和量子技术研究之间没有联系。量子技术目前处于英国研究和创新的前沿。随着投资总额高达10亿英镑,难以捉摸的量子理论被转化为新技术,即所谓的“第二次量子革命”。量子比特是所有量子技术的基本组成部分,已经出现了从超导、飞行、拓扑到原子和光学等各种相互竞争的形式。尽管变化很大,但所有这些量子位都有一个共同点:需要一种强大、可靠和可扩展的技术来生成、检测和操作它们。混合,高频光电量子比特在鲁棒性和可扩展性方面具有很大的前景。在这个项目中,我们将开发下一代太赫兹光电源,特别关注它们的能源效率。标准光电器件由于其高工作能量和低光电转换效率,在与量子电路一起使用时处于劣势。不幸的是,这会导致不必要的散失热量,当它靠近量子电路时,它会严重破坏该电路携带的任何量子信息。所提出的光源的效率将至少提高20到50倍,并且可以在未来与量子纳米电子电路一起使用,以产生超快的皮秒量子比特,而不会破坏邻近量子电路的量子特性。此外,本项目开发的新型光电器件可用于研究皮秒和亚皮秒时间尺度下的基本量子力学相互作用。这项研究将在格拉斯哥大学詹姆斯瓦特工程学院的电子和纳米工程系进行。该项目的持续时间为24个月,将涉及詹姆斯瓦特纳米制造中心的先进纳米制造和光电装置的开发。该装置将具有在近红外波长执行超快泵浦探针测量的能力。通过这种设置,我们将产生高能效的皮秒(THz)脉冲,测量它们的绝对效率,并将其与标准商用设备进行比较。该项目得益于Neel研究所、法国国家科学研究中心和QMC仪器公司研究小组的合作和支持。这项研究的结果将是朝着更强大和可扩展的量子比特以及访问超快量子动力学迈出的一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Giorgos Georgiou其他文献
The DSM-5 with Limited Prosocial Emotions Specifier for Conduct Disorder: a Systematic Literature Review
- DOI:
10.1007/s10862-020-09799-3 - 发表时间:
2020-04-21 - 期刊:
- 影响因子:1.700
- 作者:
Olivier F. Colins;Lore Van Damme;Anne M. Hendriks;Giorgos Georgiou - 通讯作者:
Giorgos Georgiou
Electronic interferometry with ultrashort plasmonic pulses
超短等离子体脉冲的电子干涉测量
- DOI:
10.1038/s41467-025-58939-4 - 发表时间:
2025-05-19 - 期刊:
- 影响因子:15.700
- 作者:
Seddik Ouacel;Lucas Mazzella;Thomas Kloss;Matteo Aluffi;Thomas Vasselon;Hermann Edlbauer;Junliang Wang;Clément Geffroy;Jashwanth Shaju;Arne Ludwig;Andreas D. Wieck;Michihisa Yamamoto;David Pomaranski;Shintaro Takada;Nobu-Hisa Kaneko;Giorgos Georgiou;Xavier Waintal;Matias Urdampilleta;Hermann Sellier;Christopher Bäuerle - 通讯作者:
Christopher Bäuerle
Giorgos Georgiou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
量子限制杂质原子作为单电子量子点对Terahertz远红外发光器的应用
- 批准号:60776044
- 批准年份:2007
- 资助金额:32.0 万元
- 项目类别:面上项目
相似海外基金
Terahertz-frequency sensors for atmospheric chemistry and space research (renewal)
用于大气化学和空间研究的太赫兹频率传感器(更新)
- 批准号:
MR/Y011775/1 - 财政年份:2024
- 资助金额:
$ 66.88万 - 项目类别:
Fellowship
Terahertz Imaging for Side-Channel Attacks
用于侧信道攻击的太赫兹成像
- 批准号:
NI230100072 - 财政年份:2024
- 资助金额:
$ 66.88万 - 项目类别:
National Intelligence and Security Discovery Research Grants
Next Generation Terahertz Materials
下一代太赫兹材料
- 批准号:
DP240103404 - 财政年份:2024
- 资助金额:
$ 66.88万 - 项目类别:
Discovery Projects
Spatial light modulator by MEMS reconfigurable metamaterial for Terahertz wave
太赫兹波MEMS可重构超材料空间光调制器
- 批准号:
23K20256 - 财政年份:2024
- 资助金额:
$ 66.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
AuNPs and DNA Aptamer-Driven Terahertz Sensor for Highly Sensitive Detection of Small Molecules
AuNP 和 DNA 适配体驱动的太赫兹传感器,用于小分子的高灵敏度检测
- 批准号:
24K07524 - 财政年份:2024
- 资助金额:
$ 66.88万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
6G Terahertz Communications for Future Heterogeneous Wireless Network
面向未来异构无线网络的 6G 太赫兹通信
- 批准号:
EP/Y035135/1 - 财政年份:2024
- 资助金额:
$ 66.88万 - 项目类别:
Research Grant
Leaky Dielectric Platform for Integrated Terahertz Components
用于集成太赫兹组件的漏电介质平台
- 批准号:
DP240100162 - 财政年份:2024
- 资助金额:
$ 66.88万 - 项目类别:
Discovery Projects
Resonant tunneling diode Terahertz oscillator with superlattice heterostructure for high output power
具有超晶格异质结构的谐振隧道二极管太赫兹振荡器,可实现高输出功率
- 批准号:
24K17329 - 财政年份:2024
- 资助金额:
$ 66.88万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
PFI-TT: Scale up of new materials that generate terahertz-frequency light for advanced scanning applications
PFI-TT:扩大产生太赫兹频率光的新材料的规模,用于高级扫描应用
- 批准号:
2345726 - 财政年份:2024
- 资助金额:
$ 66.88万 - 项目类别:
Standard Grant
Development of GaN quantum cascade laser to cover the unexplored terahertz wave frequencies
开发GaN量子级联激光器以覆盖未探索的太赫兹波频率
- 批准号:
24K00953 - 财政年份:2024
- 资助金额:
$ 66.88万 - 项目类别:
Grant-in-Aid for Scientific Research (B)