Use of Synthetic Aperture Radar (SAR) images for fuel moisture modelling and land cover mapping in the case of boreal forests and natural grasslands

使用合成孔径雷达 (SAR) 图像进行北方森林和天然草原的燃料湿度建模和土地覆盖绘图

基本信息

  • 批准号:
    170378-2012
  • 负责人:
  • 金额:
    $ 1.97万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Boreal forests and natural grasslands are two important ecosystems in the world, but they are also prone to fires. The Fire Weather Index (FWI) system of the Canadian Fire Danger rating system is used in many places in the world to rate fire dangers based primarily on weather data, which are point-source measurements. A promising alternative is using satellite data. The long term goal of my research program is to map Fire Weather Index codes for boreal forests and natural grasslands using remote sensing. In the short term, using images and data available through on-going collaborations on Canadian/South African natural grasslands and Alaska boreal forests, we will (i) compare two classifiers that simultaneously use polarimetric synthetic aperture radar (polSAR), optical and other geospatial data for land cover mapping; (ii) develop an empirical model to estimate the FWI drought code (DC) for natural grasslands; and (iii) test a physics-based DC model using polSAR images. The study will use both RADARSAT-2 C-band and ALOS-PALSAR L-band polSAR images. Our research team has built unique expertise on the use of SAR images for mapping FWI codes and indices. The proposed research continues this innovative trend in many ways. From the classifier point of view, it is the first time that the proposed genetic algorithm-neural network classifier will be use to classify boreal forest and natural grassland ecosystems. From the DC modeling point of view, all the soil moisture models using polSAR data were mainly developed for agricultural fields. It is the first time that DC of natural grasslands will be modeled using polSAR data and that a physics-based model will be proposed to estimate DC from polSAR images acquired over both boreal forest and natural grasslands. In Canada, the proposed research addresses fire research priorities of the Canadian Council of Forest Ministers. Across the world, better prediction of FWI codes and indices using remote sensing will have significant benefits both from the economical and the human safety points of views. The proposed research has a potential for significant economic advancement for Canada, as it will produce new market opportunities for MDA Inc., the R-2 owner.
北方森林和天然草原是世界上两个重要的生态系统,但它们也容易发生火灾。加拿大火灾危险评级系统的火灾天气指数系统在世界许多地方使用,主要根据天气数据对火灾危险进行评级,这些数据是点源测量。一个有希望的替代方法是使用卫星数据。我的研究计划的长期目标是利用遥感技术绘制北方森林和天然草原的火灾天气指数代码。在短期内,我们将利用加拿大/南非天然草原和阿拉斯加北方森林持续合作中获得的图像和数据,㈠比较同时使用极化合成孔径雷达、光学和其他地理空间数据进行土地覆盖制图的两种分类器; ㈡开发一个经验模型,估计天然草原的FWI干旱代码;以及(iii)使用polSAR图像测试基于物理的DC模型。这项研究将使用雷达卫星2号C波段和ALOS-PALSAR L波段polSAR图像。我们的研究团队在使用SAR图像绘制FWI代码和指数方面积累了独特的专业知识。拟议的研究在许多方面延续了这一创新趋势。从分类器的角度来看,这是第一次提出的遗传算法-神经网络分类器将用于北方森林和天然草地生态系统的分类。从直流建模的角度来看,所有基于极化SAR数据的土壤水分模型主要是针对农业领域开发的。这是第一次,DC的天然草地将使用polSAR数据建模,并提出了一个基于物理的模型来估计DC从polSAR图像采集的北方森林和天然草地。在加拿大,拟议的研究涉及加拿大森林部长理事会的火灾研究优先事项。在全世界范围内,利用遥感更好地预测FWI代码和指数将从经济和人类安全的角度来看具有显着的好处。拟议中的研究有可能为加拿大带来重大的经济进步,因为它将为MDA公司带来新的市场机会,R-2的拥有者

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Leblon, Brigitte其他文献

Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn
  • DOI:
    10.3390/rs12132071
  • 发表时间:
    2020-07-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Lee, Hwang;Wang, Jinfei;Leblon, Brigitte
  • 通讯作者:
    Leblon, Brigitte
On the use of X-ray computed tomography for determining wood properties: a review
  • DOI:
    10.1139/x11-111
  • 发表时间:
    2011-11-01
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Wei, Qiang;Leblon, Brigitte;La Rocque, Armand
  • 通讯作者:
    La Rocque, Armand
Comparison between Empirical Models and the CBM-CFS3 Carbon Budget Model to Predict Carbon Stocks and Yields in Nova Scotia Forests
  • DOI:
    10.3390/f12091235
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Heffner, Jason;Steenberg, James;Leblon, Brigitte
  • 通讯作者:
    Leblon, Brigitte
Non-destructive estimation of potato leaf chlorophyll from canopy hyperspectral reflectance using the inverted PROSAIL model
Evaluation of Soil Properties, Topographic Metrics, Plant Height, and Unmanned Aerial Vehicle Multispectral Imagery Using Machine Learning Methods to Estimate Canopy Nitrogen Weight in Corn
  • DOI:
    10.3390/rs13163105
  • 发表时间:
    2021-08-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Yu, Jody;Wang, Jinfei;Leblon, Brigitte
  • 通讯作者:
    Leblon, Brigitte

Leblon, Brigitte的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Leblon, Brigitte', 18)}}的其他基金

Use of UAV images for precision agriculture and environmental applications
使用无人机图像进行精准农业和环境应用
  • 批准号:
    RGPIN-2018-04130
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Use of UAV images for precision agriculture and environmental applications
使用无人机图像进行精准农业和环境应用
  • 批准号:
    RGPIN-2018-04130
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Use of UAV images for precision agriculture and environmental applications
使用无人机图像进行精准农业和环境应用
  • 批准号:
    RGPIN-2018-04130
  • 财政年份:
    2020
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Use of UAV images for precision agriculture and environmental applications
使用无人机图像进行精准农业和环境应用
  • 批准号:
    RGPIN-2018-04130
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a UAV-based multispectral camera for precision agriculture applications
开发用于精准农业应用的基于无人机的多光谱相机
  • 批准号:
    507141-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Collaborative Research and Development Grants
Development of a UAV-based multispectral camera for precision agriculture applications
开发用于精准农业应用的基于无人机的多光谱相机
  • 批准号:
    507141-2016
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Collaborative Research and Development Grants
Use of UAV images for precision agriculture and environmental applications
使用无人机图像进行精准农业和环境应用
  • 批准号:
    RGPIN-2018-04130
  • 财政年份:
    2018
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Development of a UAV-based multispectral camera for precision agriculture applications
开发用于精准农业应用的基于无人机的多光谱相机
  • 批准号:
    507141-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Collaborative Research and Development Grants
Development of a drone-based camera for precision agriculture
开发用于精准农业的无人机相机
  • 批准号:
    493519-2016
  • 财政年份:
    2016
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Engage Plus Grants Program
Use of Synthetic Aperture Radar (SAR) images for fuel moisture modelling and land cover mapping in the case of boreal forests and natural grasslands
使用合成孔径雷达 (SAR) 图像进行北方森林和天然草原的燃料湿度建模和土地覆盖绘图
  • 批准号:
    170378-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Framework construction and engineering development of polarimetric-interferometric synthetic aperture radar based on phasor-quaternion neural networks
基于相量四元数神经网络的偏振干涉合成孔径雷达框架构建及工程开发
  • 批准号:
    23H00487
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
SBIR Phase I: Autonomous Interferometric Synthetic Aperture Radar (InSAR) for surface deformation monitoring
SBIR 第一阶段:用于表面变形监测的自主干涉合成孔径雷达 (InSAR)
  • 批准号:
    2213289
  • 财政年份:
    2023
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Turbulence diagnosis using the Synthetic Aperture Microwave Imager (SAMI).
使用合成孔径微波成像仪 (SAMI) 进行湍流诊断。
  • 批准号:
    2752179
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Studentship
Implications and Applications of Emerging Polarimetric Synthetic Aperture Radar for the Retrieval of Freshwater Ice Properties
新兴偏振合成孔径雷达对淡水冰性质反演的意义和应用
  • 批准号:
    RGPIN-2021-02742
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
RII Track-4:FAST: An investigation of tropical cyclone intensity using synthetic aperture radars and complementary satellite ocean observations
RII Track-4:FAST:利用合成孔径雷达和补充卫星海洋观测研究热带气旋强度
  • 批准号:
    2132150
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Standard Grant
Modelling Sea Surface Wind Vectors with Coherent Dual Polarization Synthetic Aperture Radar
使用相干双偏振合成孔径雷达模拟海面风矢量
  • 批准号:
    RGPIN-2018-04221
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Individual
Implications and Applications of Emerging Polarimetric Synthetic Aperture Radar for the Retrieval of Freshwater Ice Properties
新兴偏振合成孔径雷达对淡水冰性质反演的意义和应用
  • 批准号:
    RGPNS-2021-02742
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Discovery Grants Program - Northern Research Supplement
Optimal sea ice monitoring using C- and L-band synthetic aperture radar
使用 C 和 L 波段合成孔径雷达进行最佳海冰监测
  • 批准号:
    557649-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Postdoctoral Fellowships
Non-Canonical Integral Transforms for Multistatic Synthetic Aperture Radar (SAR) and Video SAR (VSAR) for Target Motion
用于目标运动的多基地合成孔径雷达 (SAR) 和视频 SAR (VSAR) 的非规范积分变换
  • 批准号:
    2905381
  • 财政年份:
    2022
  • 资助金额:
    $ 1.97万
  • 项目类别:
    Studentship
Optically tracked freehand swept synthetic aperture ultrasound
光学跟踪徒手扫描合成孔径超声
  • 批准号:
    10289190
  • 财政年份:
    2021
  • 资助金额:
    $ 1.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了