Development of a UAV-based multispectral camera for precision agriculture applications
开发用于精准农业应用的基于无人机的多光谱相机
基本信息
- 批准号:507141-2016
- 负责人:
- 金额:$ 9.18万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A&L Canada Laboratories Inc. (referred hereafter as A&L) has been involved in precision agriculture for over 20 years. A&L is working on becoming a major player in the development of remote sensing devices for both field and greenhouse applications and interpretation of such data for growers. There is current market demand for more mobile, fast, adaptable and easy ways to use remote sensing technology in the agriculture sector. It is necessary for A&L to build its own customized camera system, as none on the market are both light enough to fit on a UAV, while providing the required sensing capability at the same time. Our project is a joint effort between UNB and Western professors with A&L scientists / engineers and AAFC scientists to develop operational methods that use the A&L camera and UAV for various precision agriculture applications. The camera will have seven bands of 10 nm, centered in the following wavelengths: 464, 542, 639, 669, 708, 800, and 845 nm. The specific project objectives are: (i) To develop a second generation multispectral camera with enhanced performances for both greenhouse and low weight UAV applications; (ii) To develop a streamlined methodology for mapping crop damage surfaces from the images acquired by the UAV-based camera. This information is required by the provincial crop insurance agencies; (iii) To develop a streamlined methodology for detecting late blight disease in potato fields from the images acquired by the UAV-based camera; (iv) To develop a streamlined methodology for detecting powdery mildew, gummy stem blight and mosaic virus diseases on greenhouse cucumber plants from the images acquired by the camera mounted on a robotic arm; and (v) To develop a streamlined methodology for mapping crop nitrogen status from the images acquired by the UAV-based camera. The project is a follow-up of several Engage/Engage+ projects between A&L and the universities. It will support five Ph.D. students, 2 M.Sc. students, and partially 1 research associate.****
A&L加拿大实验室有限公司(以下简称A&L)从事精准农业已有20多年的历史。A&L正在努力成为田间和温室应用遥感设备开发的主要参与者,并为种植者解释这些数据。目前市场对在农业部门使用遥感技术的更灵活、更快速、更灵活和更容易的方式有需求。对于A&L来说,有必要建立自己的定制相机系统,因为市场上没有一种相机足够轻,可以安装在无人机上,同时提供所需的传感功能。我们的项目是UNB和西方教授与A&L科学家/工程师和AAFC科学家共同努力,开发使用A&L相机和无人机应用于各种精准农业应用的操作方法。相机将有7个10 nm的波段,以以下波长为中心:464、542、639、669、708、800和845 nm。具体的项目目标是:(1)为温室和低重量无人机应用开发性能更好的第二代多光谱相机;(2)根据无人机相机获取的图像,开发一种简化的绘制作物损害面的方法。这些信息是省级农作物保险机构需要的;(3)开发根据无人机相机获取的图像检测马铃薯田晚疫病的简化方法;(4)开发根据安装在机械臂上的相机获取的图像检测温室黄瓜上的白粉病、胶状茎枯病和花叶病毒病的简化方法;(5)开发根据无人机相机获取的图像绘制作物氮素状况图的简化方法。该项目是A&L与大学之间几个Engage/Engage+项目的后续项目。它将支持5名博士生,2名硕士研究生。学生和部分1名研究助理。*
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Leblon, Brigitte其他文献
Using Linear Regression, Random Forests, and Support Vector Machine with Unmanned Aerial Vehicle Multispectral Images to Predict Canopy Nitrogen Weight in Corn
- DOI:
10.3390/rs12132071 - 发表时间:
2020-07-01 - 期刊:
- 影响因子:5
- 作者:
Lee, Hwang;Wang, Jinfei;Leblon, Brigitte - 通讯作者:
Leblon, Brigitte
On the use of X-ray computed tomography for determining wood properties: a review
- DOI:
10.1139/x11-111 - 发表时间:
2011-11-01 - 期刊:
- 影响因子:2.2
- 作者:
Wei, Qiang;Leblon, Brigitte;La Rocque, Armand - 通讯作者:
La Rocque, Armand
Comparison between Empirical Models and the CBM-CFS3 Carbon Budget Model to Predict Carbon Stocks and Yields in Nova Scotia Forests
- DOI:
10.3390/f12091235 - 发表时间:
2021-09-01 - 期刊:
- 影响因子:2.9
- 作者:
Heffner, Jason;Steenberg, James;Leblon, Brigitte - 通讯作者:
Leblon, Brigitte
Non-destructive estimation of potato leaf chlorophyll from canopy hyperspectral reflectance using the inverted PROSAIL model
- DOI:
10.1016/j.jag.2006.11.003 - 发表时间:
2007-12-01 - 期刊:
- 影响因子:7.5
- 作者:
Botha, Elizabeth J.;Leblon, Brigitte;Watmough, James - 通讯作者:
Watmough, James
Evaluation of Soil Properties, Topographic Metrics, Plant Height, and Unmanned Aerial Vehicle Multispectral Imagery Using Machine Learning Methods to Estimate Canopy Nitrogen Weight in Corn
- DOI:
10.3390/rs13163105 - 发表时间:
2021-08-01 - 期刊:
- 影响因子:5
- 作者:
Yu, Jody;Wang, Jinfei;Leblon, Brigitte - 通讯作者:
Leblon, Brigitte
Leblon, Brigitte的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Leblon, Brigitte', 18)}}的其他基金
Use of UAV images for precision agriculture and environmental applications
使用无人机图像进行精准农业和环境应用
- 批准号:
RGPIN-2018-04130 - 财政年份:2022
- 资助金额:
$ 9.18万 - 项目类别:
Discovery Grants Program - Individual
Use of UAV images for precision agriculture and environmental applications
使用无人机图像进行精准农业和环境应用
- 批准号:
RGPIN-2018-04130 - 财政年份:2021
- 资助金额:
$ 9.18万 - 项目类别:
Discovery Grants Program - Individual
Use of UAV images for precision agriculture and environmental applications
使用无人机图像进行精准农业和环境应用
- 批准号:
RGPIN-2018-04130 - 财政年份:2020
- 资助金额:
$ 9.18万 - 项目类别:
Discovery Grants Program - Individual
Use of UAV images for precision agriculture and environmental applications
使用无人机图像进行精准农业和环境应用
- 批准号:
RGPIN-2018-04130 - 财政年份:2019
- 资助金额:
$ 9.18万 - 项目类别:
Discovery Grants Program - Individual
Development of a UAV-based multispectral camera for precision agriculture applications
开发用于精准农业应用的基于无人机的多光谱相机
- 批准号:
507141-2016 - 财政年份:2019
- 资助金额:
$ 9.18万 - 项目类别:
Collaborative Research and Development Grants
Use of UAV images for precision agriculture and environmental applications
使用无人机图像进行精准农业和环境应用
- 批准号:
RGPIN-2018-04130 - 财政年份:2018
- 资助金额:
$ 9.18万 - 项目类别:
Discovery Grants Program - Individual
Development of a UAV-based multispectral camera for precision agriculture applications
开发用于精准农业应用的基于无人机的多光谱相机
- 批准号:
507141-2016 - 财政年份:2017
- 资助金额:
$ 9.18万 - 项目类别:
Collaborative Research and Development Grants
Use of Synthetic Aperture Radar (SAR) images for fuel moisture modelling and land cover mapping in the case of boreal forests and natural grasslands
使用合成孔径雷达 (SAR) 图像进行北方森林和天然草原的燃料湿度建模和土地覆盖绘图
- 批准号:
170378-2012 - 财政年份:2017
- 资助金额:
$ 9.18万 - 项目类别:
Discovery Grants Program - Individual
Development of a drone-based camera for precision agriculture
开发用于精准农业的无人机相机
- 批准号:
493519-2016 - 财政年份:2016
- 资助金额:
$ 9.18万 - 项目类别:
Engage Plus Grants Program
Use of Synthetic Aperture Radar (SAR) images for fuel moisture modelling and land cover mapping in the case of boreal forests and natural grasslands
使用合成孔径雷达 (SAR) 图像进行北方森林和天然草原的燃料湿度建模和土地覆盖绘图
- 批准号:
170378-2012 - 财政年份:2015
- 资助金额:
$ 9.18万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
空天地数字农业:无人机(UAV)集群+大数据驱动赋能贵妃枇杷全息农场系统构建与关键技术应用研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
面向城市边缘网络应急服务调控的RIS-UAV协同资源优化配置研究
- 批准号:62301082
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
UAV/InSAR深度融合采动区地表形变损坏信息提取关键技术研究
- 批准号:52364018
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
基于UAV和多源卫星遥感数据的青藏高原高寒草地植被覆盖度反演研究
- 批准号:42361023
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
- 批准号:62362017
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
禄丰环状构造的UAV数字地貌建模及地表特征测量模拟分析
- 批准号:62266026
- 批准年份:2022
- 资助金额:34 万元
- 项目类别:地区科学基金项目
基于UAV和卫星遥感数据的桉树林分蓄积量动态变化监测及合理经营周期预测
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
BDS/UAV/RTS协同的快速高精度定位定向算法与系统
- 批准号:n/a
- 批准年份:2022
- 资助金额:0.0 万元
- 项目类别:省市级项目
结合UAV-LiDAR和卫星遥感数据的红树林退化多尺度监测研究
- 批准号:32101525
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于异类信息融合的UAV自主着舰位姿测量方法
- 批准号:62033010
- 批准年份:2020
- 资助金额:272 万元
- 项目类别:重点项目
相似海外基金
Feasibility study for development of an accessible UAV-based Tree Health Management Platform: Ash Dieback
开发基于无人机的无障碍树木健康管理平台的可行性研究:Ash Dieback
- 批准号:
10054228 - 财政年份:2023
- 资助金额:
$ 9.18万 - 项目类别:
Collaborative R&D
Development of a UAV-based persistent surveillance system
基于无人机的持续监视系统的开发
- 批准号:
576533-2022 - 财政年份:2022
- 资助金额:
$ 9.18万 - 项目类别:
Alliance Grants
Development of Virtual Forest Creation Method Based on UAV Observations for Estimating Photosynthetic Active Radiation
基于无人机观测估算光合有效辐射的虚拟森林创建方法的发展
- 批准号:
22K21340 - 财政年份:2022
- 资助金额:
$ 9.18万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Contribution to the Development of a Technology Demonstrator for UAV based Communication Link
为基于无人机的通信链路技术演示器的开发做出贡献
- 批准号:
567069-2021 - 财政年份:2021
- 资助金额:
$ 9.18万 - 项目类别:
University Undergraduate Student Research Awards
Development of broadleaved forest measurement technology at the individual tree level using UAV-based laser and multispectral data
利用无人机激光和多光谱数据开发单树阔叶林测量技术
- 批准号:
19K15870 - 财政年份:2019
- 资助金额:
$ 9.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development and testing of a model predictive control-based indoor UAV vision-based pursuit task
基于模型预测控制的室内无人机视觉追踪任务开发与测试
- 批准号:
541629-2019 - 财政年份:2019
- 资助金额:
$ 9.18万 - 项目类别:
University Undergraduate Student Research Awards
Development of diagnostic technique for paddy rice growth using UAV-based hyperspectral remote sensing
基于无人机的高光谱遥感水稻生长诊断技术开发
- 批准号:
19K06305 - 财政年份:2019
- 资助金额:
$ 9.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of a UAV-based multispectral camera for precision agriculture applications
开发用于精准农业应用的基于无人机的多光谱相机
- 批准号:
507141-2016 - 财政年份:2019
- 资助金额:
$ 9.18万 - 项目类别:
Collaborative Research and Development Grants
Learning-based Pose Coordination of Multirotor UAV Networks: Theory Development and Experimental Validation
基于学习的多旋翼无人机网络姿态协调:理论发展和实验验证
- 批准号:
18K13775 - 财政年份:2018
- 资助金额:
$ 9.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Development of a UAV-based multispectral camera for precision agriculture applications
开发用于精准农业应用的基于无人机的多光谱相机
- 批准号:
507141-2016 - 财政年份:2017
- 资助金额:
$ 9.18万 - 项目类别:
Collaborative Research and Development Grants