Error Reduction in Handwriting Recognition with applications
减少应用程序手写识别中的错误
基本信息
- 批准号:RGPIN-2014-04330
- 负责人:
- 金额:$ 2.84万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this program is to conduct advanced innovative research in computer recognition of handwritten characters, words, and symbols. Handwriting is one of the most challenging subjects in the field of pattern recognition due to the infinite varieties of character shapes and qualities. Although handwriting recognition systems have the potential of reading bank cheques, envelopes, archival documents, utility payment slips, income tax returns, and other business forms, very few are actually used at the moment, due to the high error rate of the current recognition systems. Indeed, banks and different companies are spending billions of dollars each week to enter handwritten data manually into the computer. In the past, most research was focused on high recognition rates with less emphasis on the most difficult and costly problems of error rates. This research picks up this challenge by investigating different methods of reducing the error rate to increase the reliability of recognitions, to produce a new generation of recognition systems for full deployment in practical environments.This research aims to increase the intelligence and capability of computers so that they can read, at high speed and with great accuracy, the information written on various types of documents where billions of dollars are being spent each week to manually enter the handwritten data from documents into the computer. Based on decades of experience plus a world renowned reputation in(a) conducting intense research in handwriting recognition,(b) having developed numerous high performance recognition systems, (c) having guided more than 190 graduate students, post-doctoral fellows, and visiting academic/industrial scientists, and(d) playing a lead role in this field and constantly interacting with prominent researchers around the world, the applicant proposes the following program to minimize the error rate and maximize the recognition score:1) To continue to investigate the causes of substitution errors and the drawbacks of current recognition systems,2) To explore and evaluate a variety of configurations of error-reduction schemes with a cascade of uncertainty-removal modules,3) To create very large databases and introduce new training techniques to separate good and bad samples,4) To discover distinctive features and vital parts of individual characters derived from eye-tracking and perceptual studies.5) To select dynamic sets of complementary features for various stages of multi-stage recognition systems to produce the most reliable and the best system to recognize handwritten data in different languages, English, French, Arabic, Chinese, etc.6) To integrate the error-reduced recognition systems with the high-performance systems, and discover the critical paths of optimizing their overall performance and trade-offs,7) To apply the results to conduct large-scale experiments on reading different kinds of real-world business documents, word spotting, e.g. custom's declaration forms, taxation forms, bank cheques, utility bills, and archival documents of historical value, 8) To Introduce this new breed of hybrid classifiers which can identify confusing character/word shapes, minimize costly substitution errors and maximize performance, so that the newly developed systems can be used in practice to save billions of dollars and a huge amount of manpower.9) Expand this project to recognize other types of patterns such as irises, faces, palmprints, and pedestrian patterns..
该计划的目标是在手写字符,单词和符号的计算机识别方面进行先进的创新研究。笔迹是模式识别领域中最具挑战性的课题之一,因为笔迹的形状和性质千差万别。尽管手写识别系统具有识别银行支票、信封、档案文件、公用事业付款单、所得税申报表和其他商业形式的潜力,但由于当前识别系统的高错误率,目前实际使用的很少。事实上,银行和不同的公司每周花费数十亿美元将手写数据手动输入计算机。在过去,大多数研究都集中在高识别率上,而很少重视最困难和最昂贵的错误率问题。本研究通过研究降低错误率以提高识别可靠性的不同方法来迎接这一挑战,以生产新一代识别系统,以便在实际环境中全面部署。这项研究旨在提高计算机的智能和能力,使它们能够以高速度和高准确性读取写在各种类型文档上的信息,而每周都要花费数十亿美元将文档中的手写数据手动输入计算机。基于数十年的经验和世界知名的声誉,(a)在手写识别方面进行了深入的研究,(b)开发了许多高性能的识别系统,(c)指导了190多名研究生,博士后研究员和访问学者/工业科学家,以及(d)在该领域发挥主导作用,并不断与世界各地的杰出研究人员进行互动。申请人提出以下方案,以最大限度地减少错误率和最大限度地提高识别分数:1)继续调查替代错误的原因和当前识别系统的缺点,2)探索和评估各种配置的减少错误的方案与级联的不确定性去除模块,3)创建非常大的数据库,并引入新的训练技术来分离好的和坏的样本,4)发现不同的特征和关键通过眼动追踪和知觉研究得出的个别人物的部分。5)为多阶段识别系统的各个阶段选择动态的互补特征集,以产生最可靠和最佳的系统,以识别不同语言(英语,法语,阿拉伯语,中文等)的手写数据。6)将减少错误的识别系统与高性能系统相结合。并发现优化其整体性能和权衡的关键路径,7)将结果应用于阅读不同类型的现实世界商业文档,单词识别,例如海关申报表,税单,银行支票,公用事业账单和具有历史价值的档案文件进行大规模实验,8)引入这种新型混合分类器,可以识别混淆的字符/单词形状。最大限度地减少代价高昂的替代错误,最大限度地提高性能,从而使新开发的系统可以在实践中使用,节省数十亿美元和大量人力。9)扩展该项目以识别其他类型的图案,如虹膜、面部、掌纹和行人图案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suen, Ching其他文献
Suen, Ching的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suen, Ching', 18)}}的其他基金
Computational Analysis of Handwriting, Character Recognition, and Design of Digital Fonts
手写计算分析、字符识别和数字字体设计
- 批准号:
RGPIN-2019-07005 - 财政年份:2022
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Computational Analysis of Handwriting, Character Recognition, and Design of Digital Fonts
手写计算分析、字符识别和数字字体设计
- 批准号:
RGPIN-2019-07005 - 财政年份:2021
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Computational Analysis of Handwriting, Character Recognition, and Design of Digital Fonts
手写计算分析、字符识别和数字字体设计
- 批准号:
RGPIN-2019-07005 - 财政年份:2020
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Computational Analysis of Handwriting, Character Recognition, and Design of Digital Fonts
手写计算分析、字符识别和数字字体设计
- 批准号:
RGPIN-2019-07005 - 财政年份:2019
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Error Reduction in Handwriting Recognition with applications
减少应用程序手写识别中的错误
- 批准号:
RGPIN-2014-04330 - 财政年份:2018
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Develop a baseline methodology to integrate handwriting recognition (HWR) on large display connected eWriters to eliminate the dependency in the use of a keyboard
开发一种基线方法,将手写识别 (HWR) 集成到连接大显示屏的电子书写器上,以消除对使用键盘的依赖
- 批准号:
515830-2017 - 财政年份:2017
- 资助金额:
$ 2.84万 - 项目类别:
Engage Grants Program
Error Reduction in Handwriting Recognition with applications
减少应用程序手写识别中的错误
- 批准号:
RGPIN-2014-04330 - 财政年份:2016
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Error Reduction in Handwriting Recognition with applications
减少应用程序手写识别中的错误
- 批准号:
RGPIN-2014-04330 - 财政年份:2015
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Error Reduction in Handwriting Recognition with applications
减少应用程序手写识别中的错误
- 批准号:
RGPIN-2014-04330 - 财政年份:2014
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Software design and development in early breast cancer detection
早期乳腺癌检测的软件设计与开发
- 批准号:
461958-2013 - 财政年份:2013
- 资助金额:
$ 2.84万 - 项目类别:
Engage Grants Program
相似国自然基金
兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
- 批准号:32373187
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Error Reduction in Handwriting Recognition with applications
减少应用程序手写识别中的错误
- 批准号:
RGPIN-2014-04330 - 财政年份:2018
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Error Reduction in Handwriting Recognition with applications
减少应用程序手写识别中的错误
- 批准号:
RGPIN-2014-04330 - 财政年份:2016
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Error Reduction in Handwriting Recognition with applications
减少应用程序手写识别中的错误
- 批准号:
RGPIN-2014-04330 - 财政年份:2015
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Error Reduction in Handwriting Recognition with applications
减少应用程序手写识别中的错误
- 批准号:
RGPIN-2014-04330 - 财政年份:2014
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Error Reduction in Handwriting Recognition with Applications
使用应用程序减少手写识别中的错误
- 批准号:
8989-2013 - 财政年份:2013
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Error Reduction in Handwriting Recognition
减少手写识别错误
- 批准号:
8989-2012 - 财政年份:2012
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Error reduction in handwriting recognition
减少手写识别错误
- 批准号:
8989-2007 - 财政年份:2011
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Error reduction in handwriting recognition
减少手写识别错误
- 批准号:
8989-2007 - 财政年份:2010
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Error reduction in handwriting recognition
减少手写识别错误
- 批准号:
8989-2007 - 财政年份:2009
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual
Error reduction in handwriting recognition
减少手写识别错误
- 批准号:
8989-2007 - 财政年份:2008
- 资助金额:
$ 2.84万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




