Error Reduction in Handwriting Recognition with applications

减少应用程序手写识别中的错误

基本信息

  • 批准号:
    RGPIN-2014-04330
  • 负责人:
  • 金额:
    $ 2.84万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

The objective of this program is to conduct advanced innovative research in computer recognition of handwritten characters, words, and symbols. Handwriting is one of the most challenging subjects in the field of pattern recognition due to the infinite varieties of character shapes and qualities. Although handwriting recognition systems have the potential of reading bank cheques, envelopes, archival documents, utility payment slips, income tax returns, and other business forms, very few are actually used at the moment, due to the high error rate of the current recognition systems. Indeed, banks and different companies are spending billions of dollars each week to enter handwritten data manually into the computer. In the past, most research was focused on high recognition rates with less emphasis on the most difficult and costly problems of error rates. This research picks up this challenge by investigating different methods of reducing the error rate to increase the reliability of recognitions, to produce a new generation of recognition systems for full deployment in practical environments.**This research aims to increase the intelligence and capability of computers so that they can read, at high speed and with great accuracy, the information written on various types of documents where billions of dollars are being spent each week to manually enter the handwritten data from documents into the computer. Based on decades of experience plus a world renowned reputation in**(a) conducting intense research in handwriting recognition,*(b) having developed numerous high performance recognition systems, *(c) having guided more than 190 graduate students, post-doctoral fellows, and visiting academic/industrial scientists, and*(d) playing a lead role in this field and constantly interacting with prominent researchers around the world, **the applicant proposes the following program to minimize the error rate and maximize the recognition score:**1) To continue to investigate the causes of substitution errors and the drawbacks of current recognition systems,*2) To explore and evaluate a variety of configurations of error-reduction schemes with a cascade of * uncertainty-removal modules,*3) To create very large databases and introduce new training techniques to separate good and bad samples,*4) To discover distinctive features and vital parts of individual characters derived from eye-tracking and perceptual studies.*5) To select dynamic sets of complementary features for various stages of multi-stage recognition systems to produce * the most reliable and the best system to recognize handwritten data in different languages, English, French, Arabic, * Chinese, etc.*6) To integrate the error-reduced recognition systems with the high-performance systems, and discover the critical paths * of optimizing their overall performance and trade-offs,*7) To apply the results to conduct large-scale experiments on reading different kinds of real-world business documents, * word spotting, e.g. custom's declaration forms, taxation forms, bank cheques, utility bills, and archival documents * of historical value, *8) To Introduce this new breed of hybrid classifiers which can identify confusing character/word shapes, minimize costly * substitution errors and maximize performance, so that the newly developed systems can be used in practice to save * billions of dollars and a huge amount of manpower.*9) Expand this project to recognize other types of patterns such as irises, faces, palmprints, and pedestrian patterns.**.
该项目的目标是在手写字符、单词和符号的计算机识别方面进行高级创新研究。由于字符的形状和性质千变万化,笔迹是模式识别领域中最具挑战性的课题之一。虽然手写识别系统具有读取银行支票、信封、档案文件、公用事业支付单据、所得税申报单和其他商业形式的潜力,但由于当前识别系统的高错误率,目前实际使用的很少。事实上,银行和不同的公司每周都在花费数十亿美元将手写数据手动输入计算机。在过去,大多数研究都集中在高识别率上,而较少关注最困难和最昂贵的错误率问题。这项研究通过研究降低错误率的不同方法来提高识别的可靠性,以产生新一代识别系统,以便在实际环境中全面部署,从而迎接这一挑战。**这项研究旨在提高计算机的智能和能力,以便它们能够高速和高精度地读取写在各种类型的文件上的信息,这些文件每周花费数十亿美元手动将文件中的手写数据输入计算机。基于数十年的经验以及在**(A)对手写识别进行深入研究,*(B)开发了许多高性能识别系统,*(C)指导了190多名研究生、博士后研究员和访问学术/工业科学家,以及*(D)在该领域发挥领导作用并不断与世界各地的知名研究人员互动,**申请人提出了以下计划,以将错误率降至最低,并使识别得分最大化:**1)继续调查替换错误的原因和当前识别系统的缺陷,*2)探索和评估各种错误减少方案的配置,并使用一系列*不确定性消除模块;*3)创建非常大的数据库并引入新的训练技术以分离好的和坏的样本;*4)从眼睛跟踪和感知研究中发现个别字符的独特特征和重要部分。*5)为多级识别系统的不同阶段选择动态互补特征集,以产生*最可靠和最好的系统,以识别不同语言、英语、法语、阿拉伯语、*中文的手写数据,*6)将错误减少的识别系统与高性能系统集成,并发现优化其整体性能和权衡的关键路径,*7)将结果应用于对阅读不同类型的真实世界的商业文档进行大规模实验,*单词识别,例如海关的申报单、税单、银行支票、公用设施票据和具有历史价值的档案文档*,*8)引入这种新型的混合分类器,它可以识别混淆的字符/单词形状,最大限度地减少代价高昂的*替换错误并使性能最大化,因此,新开发的系统可以在实践中使用,节省*数十亿美元和大量的人力。*9)将该项目扩展到识别其他类型的图案,如虹膜、人脸、掌纹和行人图案。**。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Suen, Ching其他文献

Suen, Ching的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Suen, Ching', 18)}}的其他基金

Computational Analysis of Handwriting, Character Recognition, and Design of Digital Fonts
手写计算分析、字符识别和数字字体设计
  • 批准号:
    RGPIN-2019-07005
  • 财政年份:
    2022
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Analysis of Handwriting, Character Recognition, and Design of Digital Fonts
手写计算分析、字符识别和数字字体设计
  • 批准号:
    RGPIN-2019-07005
  • 财政年份:
    2021
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Analysis of Handwriting, Character Recognition, and Design of Digital Fonts
手写计算分析、字符识别和数字字体设计
  • 批准号:
    RGPIN-2019-07005
  • 财政年份:
    2020
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Analysis of Handwriting, Character Recognition, and Design of Digital Fonts
手写计算分析、字符识别和数字字体设计
  • 批准号:
    RGPIN-2019-07005
  • 财政年份:
    2019
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Develop a baseline methodology to integrate handwriting recognition (HWR) on large display connected eWriters to eliminate the dependency in the use of a keyboard
开发一种基线方法,将手写识别 (HWR) 集成到连接大显示屏的电子书写器上,以消除对使用键盘的依赖
  • 批准号:
    515830-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Engage Grants Program
Error Reduction in Handwriting Recognition with applications
减少应用程序手写识别中的错误
  • 批准号:
    RGPIN-2014-04330
  • 财政年份:
    2017
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Error Reduction in Handwriting Recognition with applications
减少应用程序手写识别中的错误
  • 批准号:
    RGPIN-2014-04330
  • 财政年份:
    2016
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Error Reduction in Handwriting Recognition with applications
减少应用程序手写识别中的错误
  • 批准号:
    RGPIN-2014-04330
  • 财政年份:
    2015
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Error Reduction in Handwriting Recognition with applications
减少应用程序手写识别中的错误
  • 批准号:
    RGPIN-2014-04330
  • 财政年份:
    2014
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Software design and development in early breast cancer detection
早期乳腺癌检测的软件设计与开发
  • 批准号:
    461958-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Engage Grants Program

相似国自然基金

兼捕减少装置(Bycatch Reduction Devices, BRD)对拖网网囊系统水动力及渔获性能的调控机制
  • 批准号:
    32373187
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Error Reduction in Handwriting Recognition with applications
减少应用程序手写识别中的错误
  • 批准号:
    RGPIN-2014-04330
  • 财政年份:
    2017
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Error Reduction in Handwriting Recognition with applications
减少应用程序手写识别中的错误
  • 批准号:
    RGPIN-2014-04330
  • 财政年份:
    2016
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Error Reduction in Handwriting Recognition with applications
减少应用程序手写识别中的错误
  • 批准号:
    RGPIN-2014-04330
  • 财政年份:
    2015
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Error Reduction in Handwriting Recognition with applications
减少应用程序手写识别中的错误
  • 批准号:
    RGPIN-2014-04330
  • 财政年份:
    2014
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Error Reduction in Handwriting Recognition with Applications
使用应用程序减少手写识别中的错误
  • 批准号:
    8989-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Error Reduction in Handwriting Recognition
减少手写识别错误
  • 批准号:
    8989-2012
  • 财政年份:
    2012
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Error reduction in handwriting recognition
减少手写识别错误
  • 批准号:
    8989-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Error reduction in handwriting recognition
减少手写识别错误
  • 批准号:
    8989-2007
  • 财政年份:
    2010
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Error reduction in handwriting recognition
减少手写识别错误
  • 批准号:
    8989-2007
  • 财政年份:
    2009
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
Error reduction in handwriting recognition
减少手写识别错误
  • 批准号:
    8989-2007
  • 财政年份:
    2008
  • 资助金额:
    $ 2.84万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了