Cross-Leveraging Computational, System and Data Science in Support of Computational Epidemiology in the Era of Big Data

交叉利用计算、系统和数据科学支持大数据时代的计算流行病学

基本信息

  • 批准号:
    RGPIN-2017-04647
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Despite the rapid growing demand for -- and our contributions demonstrating the great potential of -- integration of ABMs with big data, existing simulation infrastructures provide poor support for model integration with incoming data. While our work has demonstrated that online computational statistics techniques such as Particle Filtering (PF) and Particle Markov Chain Monte Carlo (PMCMC) can form highly effective tools for integrating simulation modeling and incoming big data -- such as that from our popular iEpi system -- application of such techniques is at best awkward, and is often infeasible because of the high computational costs or high degree of implementation effort involved. To address this application area in which interdisciplinary teamwork is of central importance, we have secured strong success with our existing Frabjous domain-specific functional reactive ABM programming platform to significantly enhance ABM transparency, concision, and modularity. Despite these contributions, current ABMs commonly lack publishable specifications, are typically quite opaque to non-technical stakeholders and often confusing even to technical team members, raise significant performance barriers to scenario-based exploration by policy makers and analysts, and poor support for collaborative interaction and sharing across teams. We propose here to address these challenges using a multi-pronged strategy that starts with a port of Frabjous to the Scala language (FrabjouS) -- a language which offers strong support for modularity, parallelization, domain-specific language design and interoperability, and which we have used for many other tools. Work following this port is divided into four relatively autonomous streams. The first focuses on integrating language support for key computational statistics algorithms PF, PMCMC, and MCMC and for streaming interfaces using the streaming component of the popular Spark data science platform. The second seeks to greatly enhance ABM performance via multi-level parallelization (exploiting both distributing computing, multi-cores and GPUs at a finer-grained level), including via integration with the Spark platform. The third interface uses monadic composition to both ease common modeling tasks, and to empower model end-users to undertake analysis tasks traditionally requiring programmer support. Finally, in collaborations with a leading researcher in this the area of Human Computer Interaction (HCI) and Computer Supported Cooperative Work (CSCW), we will adapt techniques successfully used in our existing collaborative model mapping tools to implement a graphical specification language for FrabjouS as well as a collaborative tool supporting multi-user exploration, running and modification of FrabjouS models. Finally, across each phase of the work, we will evaluate model success with user studies.
尽管对ABM与大数据集成的需求迅速增长,我们的贡献也展示了ABM与大数据集成的巨大潜力,但现有的模拟基础设施对模型与即将到来的数据集成的支持很差。虽然我们的工作表明,粒子过滤(PF)和粒子马尔科夫链蒙特卡罗(PMCMC)等在线计算统计技术可以形成高效的工具,用于集成仿真建模和传入的大数据-例如来自我们流行的IEPI系统的大数据-但此类技术的应用充其量是笨拙的,而且由于涉及高计算成本或高程度的实施工作,通常是不可行的。为了解决跨学科团队合作至关重要的这一应用领域,我们利用我们现有的Frabjous领域特定功能反应式ABM编程平台取得了巨大成功,显著提高了ABM的透明度、简洁性和模块化。尽管有这些贡献,但目前的作业成本管理通常缺乏可发布的规范,对非技术利益相关者通常相当不透明,甚至经常让技术团队成员感到困惑,给政策制定者和分析师基于情景的探索带来了巨大的性能障碍,并且对团队之间的协作交互和共享的支持很差。我们在这里建议使用多管齐下的策略来应对这些挑战,从Frabjous到Scala语言(Frabjous)的移植开始--Scala语言为模块化、并行化、特定于域的语言设计和互操作性提供了强有力的支持,我们已经将其用于许多其他工具。此端口之后的工作分为四个相对自治的流。第一个重点是集成对关键计算统计算法PF、PMCMC和MCMC的语言支持,以及使用流行的Spark数据科学平台的流组件对流接口的支持。第二种是寻求通过多级并行化(在更细粒度的级别上利用分布式计算、多核和GPU)来极大地提高ABM性能,包括通过与Spark平台的集成。第三个界面使用一元组合来简化常见的建模任务,并使模型最终用户能够承担传统上需要程序员支持的分析任务。最后,我们将与该领域的领先研究人员合作,在人机交互(HCI)和计算机支持的协同工作(CSCW)领域,采用我们现有的协作模型映射工具中成功使用的技术来实现Frabjous的图形规范语言,以及支持多用户探索、运行和修改Frabjous模型的协作工具。最后,在工作的每个阶段,我们将通过用户研究来评估模型的成功。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Osgood, Nathaniel其他文献

Leveraging H1N1 infection transmission modeling with proximity sensor microdata
  • DOI:
    10.1186/1472-6947-12-35
  • 发表时间:
    2012-05-02
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Hashemian, Mohammad;Stanley, Kevin;Osgood, Nathaniel
  • 通讯作者:
    Osgood, Nathaniel
Comparison of pretrained transformer-based models for influenza and COVID-19 detection using social media text data in Saskatchewan, Canada.
使用加拿大萨斯喀彻温省的社交媒体文本数据进行了验证的基于变压器的基于变压器的模型和COVID-19检测。
  • DOI:
    10.3389/fdgth.2023.1203874
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tian, Yuan;Zhang, Wenjing;Duan, Lujie;McDonald, Wade;Osgood, Nathaniel
  • 通讯作者:
    Osgood, Nathaniel
Investigating effective testing strategies for the control of Johne's disease in western Canadian cow-calf herds using an agent-based simulation model.
  • DOI:
    10.3389/fvets.2022.1003143
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Johnson, Paisley;McLeod, Lianne;Qin, Yang;Osgood, Nathaniel;Rosengren, Leigh;Campbell, John;Larson, Kathy;Waldner, Cheryl
  • 通讯作者:
    Waldner, Cheryl
Differential mortality and the excess burden of end-stage renal disease among First Nations people with diabetes mellitus: a competing-risks analysis
  • DOI:
    10.1503/cmaj.130721
  • 发表时间:
    2014-02-04
  • 期刊:
  • 影响因子:
    14.6
  • 作者:
    Jiang, Ying;Osgood, Nathaniel;Dyck, Roland
  • 通讯作者:
    Dyck, Roland
Epidemiology of diabetes mellitus among First Nations and non-First Nations adults
  • DOI:
    10.1503/cmaj.090846
  • 发表时间:
    2010-02-23
  • 期刊:
  • 影响因子:
    14.6
  • 作者:
    Dyck, Roland;Osgood, Nathaniel;Stang, Mary Rose
  • 通讯作者:
    Stang, Mary Rose

Osgood, Nathaniel的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Osgood, Nathaniel', 18)}}的其他基金

Cross-Leveraging Computational, System and Data Science in Support of Computational Epidemiology in the Era of Big Data
交叉利用计算、系统和数据科学支持大数据时代的计算流行病学
  • 批准号:
    RGPIN-2017-04647
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Cross-Leveraging Computational, System and Data Science in Support of Computational Epidemiology in the Era of Big Data
交叉利用计算、系统和数据科学支持大数据时代的计算流行病学
  • 批准号:
    RGPIN-2017-04647
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Cross-Leveraging Computational, System and Data Science in Support of Computational Epidemiology in the Era of Big Data
交叉利用计算、系统和数据科学支持大数据时代的计算流行病学
  • 批准号:
    RGPIN-2017-04647
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Cross-Leveraging Computational, System and Data Science in Support of Computational Epidemiology in the Era of Big Data
交叉利用计算、系统和数据科学支持大数据时代的计算流行病学
  • 批准号:
    RGPIN-2017-04647
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Stocking Hygeia's toolbox: methodological innovation in support of computational epidemiology
储备 Hygeia 的工具箱:支持计算流行病学的方法创新
  • 批准号:
    327290-2011
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Stocking Hygeia's toolbox: methodological innovation in support of computational epidemiology
储备 Hygeia 的工具箱:支持计算流行病学的方法创新
  • 批准号:
    327290-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Stocking Hygeia's toolbox: methodological innovation in support of computational epidemiology
储备 Hygeia 的工具箱:支持计算流行病学的方法创新
  • 批准号:
    327290-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Stocking Hygeia's toolbox: methodological innovation in support of computational epidemiology
储备 Hygeia 的工具箱:支持计算流行病学的方法创新
  • 批准号:
    327290-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Stocking Hygeia's toolbox: methodological innovation in support of computational epidemiology
储备 Hygeia 的工具箱:支持计算流行病学的方法创新
  • 批准号:
    327290-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Hygeia's toolbox: computation and mathematics in support of public health decision making and insight
Hygeia 的工具箱:支持公共卫生决策和洞察的计算和数学
  • 批准号:
    327290-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
  • 批准号:
    2338655
  • 财政年份:
    2024
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
Leveraging computational strategies to disentangle the genetic and neural underpinnings of ADHD and its associated cognitive systems
利用计算策略来解开 ADHD 及其相关认知系统的遗传和神经基础
  • 批准号:
    10732355
  • 财政年份:
    2023
  • 资助金额:
    $ 1.46万
  • 项目类别:
A Complete Data-to-Image Machine Learning Workflow for Experimental Electromagnetic Imaging with Quantification of Image Uncertainty: Leveraging Computational Models to Combat Practical Challenges
用于实验电磁成像的完整数据到图像机器学习工作流程,并量化图像不确定性:利用计算模型应对实际挑战
  • 批准号:
    576194-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Cross-Leveraging Computational, System and Data Science in Support of Computational Epidemiology in the Era of Big Data
交叉利用计算、系统和数据科学支持大数据时代的计算流行病学
  • 批准号:
    RGPIN-2017-04647
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Leveraging computational models of neurocognition to improve predictions about individual youths' risk for substance use disorders
利用神经认知的计算模型来改进对青少年个体物质使用障碍风险的预测
  • 批准号:
    10213907
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
Leveraging Omics-Based Computational Approaches to Identify and Validate Novel Therapeutic Candidates for Endometriosis
利用基于组学的计算方法来识别和验证子宫内膜异位症的新治疗候选药物
  • 批准号:
    10458760
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
Leveraging computational models of neurocognition to improve predictions about individual youths' risk for substance use disorders
利用神经认知的计算模型来改进对青少年个体物质使用障碍风险的预测
  • 批准号:
    10382322
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
Broadening Access to CT-STEM: Leveraging lived experiences and hybrid language practices of upper elementary Mainers for computational sensemaking
扩大 CT-STEM 的使用范围:利用高年级缅因州学生的生活经验和混合语言实践来进行计算意义建构
  • 批准号:
    2122672
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
I-Corps: Leveraging the computational power of a quantum annealer to optimize the methods and technologies in the logistics and supply-chain industry
I-Corps:利用量子退火器的计算能力来优化物流和供应链行业的方法和技术
  • 批准号:
    2115108
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Leveraging Omics-Based Computational Approaches to Identify and Validate Novel Therapeutic Candidates for Endometriosis
利用基于组学的计算方法来识别和验证子宫内膜异位症的新治疗候选药物
  • 批准号:
    10699970
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了