Learning good representations for and with reinforcement learning

通过强化学习学习良好的表征

基本信息

  • 批准号:
    RGPIN-2017-06788
  • 负责人:
  • 金额:
    $ 5.17万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Artificial intelligence (AI) has made great progress in isolating different aspects of intelligence and proposing flexible representations and powerful algorithms that lead to competence in specific tasks. For example, AI agents are better than humans at playing games like Go, a feat once considered impossible. However, the sort of flexible, robust, and autonomous competence routinely exhibited by humans, or even animals, remains elusive. The best AI systems are still tuned to specific problems. Our main research goal is to develop general AI methodology that relies, at its core, on reinforcement learning. Reinforcement learning is an approach to learning from interaction with an environment, inspired by animal learning theory. This proposal aims to design algorithms that can automatically create representations for reinforcement learning agents which allow them to model the world and to act at multiple time scales. We aim to provide new optimization criteria which describe formally what is a good set of abstract representations, provide gradient-based learning algorithms to learn such models, and demonstrate their effectiveness through empirical evaluations in simulated domains, game playing, as well as real time series prediction data sets. We will tackle the crucial problem of exploration, by explaining how an agent should move about its environment in order to optimize its learning speed. Finally, we will leverage these methods inside other algorithms that can benefit from multiple time scales, such as the training of deep, recurrent neural networks.
人工智能(AI)在隔离智能的不同方面取得了巨大进展,并提出了灵活的表示和强大的算法,从而能够胜任特定任务。例如,AI智能体比人类更擅长玩围棋等游戏,这曾经被认为是不可能的。然而,人类甚至动物通常表现出的那种灵活、健壮和自主的能力仍然难以捉摸。最好的人工智能系统仍然是针对特定问题而调整的。我们的主要研究目标是开发通用的人工智能方法,其核心是强化学习。强化学习是一种从与环境的交互中学习的方法,受到动物学习理论的启发。该提案旨在设计可以自动为强化学习代理创建表示的算法,这些代理允许它们对世界进行建模并在多个时间尺度上采取行动。我们的目标是提供新的优化标准,正式描述什么是一个很好的一套抽象的表示,提供基于梯度的学习算法来学习这样的模型,并证明其有效性,通过经验评估模拟域,游戏,以及真实的时间序列预测数据集。 我们将解决探索的关键问题,通过解释代理应该如何在其环境中移动以优化其学习速度。最后,我们将在其他算法中利用这些方法,这些算法可以从多个时间尺度中受益,例如深度递归神经网络的训练。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Precup, Doina其他文献

Exploring uncertainty measures in deep networks for Multiple sclerosis lesion detection and segmentation
  • DOI:
    10.1016/j.media.2019.101557
  • 发表时间:
    2020-01-01
  • 期刊:
  • 影响因子:
    10.9
  • 作者:
    Nair, Tanya;Precup, Doina;Arbel, Tal
  • 通讯作者:
    Arbel, Tal
An information-theoretic approach to curiosity-driven reinforcement learning
  • DOI:
    10.1007/s12064-011-0142-z
  • 发表时间:
    2012-09-01
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Still, Susanne;Precup, Doina
  • 通讯作者:
    Precup, Doina
Fast reinforcement learning with generalized policy updates
BISIMULATION METRICS FOR CONTINUOUS MARKOV DECISION PROCESSES
  • DOI:
    10.1137/10080484x
  • 发表时间:
    2011-01-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Ferns, Norm;Panangaden, Prakash;Precup, Doina
  • 通讯作者:
    Precup, Doina
Time Series Analysis Using Geometric Template Matching

Precup, Doina的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Precup, Doina', 18)}}的其他基金

Learning good representations for and with reinforcement learning
通过强化学习学习良好的表征
  • 批准号:
    RGPIN-2017-06788
  • 财政年份:
    2021
  • 资助金额:
    $ 5.17万
  • 项目类别:
    Discovery Grants Program - Individual
Learning good representations for and with reinforcement learning
通过强化学习学习良好的表征
  • 批准号:
    RGPIN-2017-06788
  • 财政年份:
    2020
  • 资助金额:
    $ 5.17万
  • 项目类别:
    Discovery Grants Program - Individual
Learning good representations for and with reinforcement learning
通过强化学习学习良好的表征
  • 批准号:
    RGPIN-2017-06788
  • 财政年份:
    2019
  • 资助金额:
    $ 5.17万
  • 项目类别:
    Discovery Grants Program - Individual
Learning good representations for and with reinforcement learning
通过强化学习学习良好的表征
  • 批准号:
    RGPIN-2017-06788
  • 财政年份:
    2018
  • 资助金额:
    $ 5.17万
  • 项目类别:
    Discovery Grants Program - Individual
Machine Learning
机器学习
  • 批准号:
    1000231167-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 5.17万
  • 项目类别:
    Canada Research Chairs
Machine Learning
机器学习
  • 批准号:
    1000231167-2015
  • 财政年份:
    2016
  • 资助金额:
    $ 5.17万
  • 项目类别:
    Canada Research Chairs
Developmental reinforcement learning
发展强化学习
  • 批准号:
    238988-2010
  • 财政年份:
    2016
  • 资助金额:
    $ 5.17万
  • 项目类别:
    Discovery Grants Program - Individual
McGill Science for a Sustainable Society Symposium
麦吉尔可持续社会科学研讨会
  • 批准号:
    490803-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 5.17万
  • 项目类别:
    Regional Office Discretionary Funds
Developmental reinforcement learning
发展强化学习
  • 批准号:
    238988-2010
  • 财政年份:
    2015
  • 资助金额:
    $ 5.17万
  • 项目类别:
    Discovery Grants Program - Individual
Developmental reinforcement learning
发展强化学习
  • 批准号:
    238988-2010
  • 财政年份:
    2014
  • 资助金额:
    $ 5.17万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
  • 批准号:
    2312089
  • 财政年份:
    2024
  • 资助金额:
    $ 5.17万
  • 项目类别:
    Standard Grant
Advancing entirely virus-free CRISPR CAR T cells to clinic- Are they as good as lentiviral CAR?
将完全无病毒的CRISPR CAR T细胞推向临床——它们和慢病毒CAR一样好吗?
  • 批准号:
    MR/Y503496/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.17万
  • 项目类别:
    Research Grant
Foundations of a good egg: correctly transitioning from mitosis to meiosis
好卵子的基础:从有丝分裂到减数分裂的正确过渡
  • 批准号:
    DP240102956
  • 财政年份:
    2024
  • 资助金额:
    $ 5.17万
  • 项目类别:
    Discovery Projects
REU Site: Human-Centered Computing for Social Good
REU 网站:以人为本的计算,造福社会
  • 批准号:
    2349070
  • 财政年份:
    2024
  • 资助金额:
    $ 5.17万
  • 项目类别:
    Standard Grant
Teaching Good Relations in the Land of Plenty: Iñupiat and Non-Iñupiat on the North Slope of Alaska
在鱼米之乡讲授良好关系:阿拉斯加北坡的伊尤皮亚特人和非伊尤皮亚特人
  • 批准号:
    ES/Y010310/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.17万
  • 项目类别:
    Fellowship
Co-creating digital education about parenting and father-inclusive practice: combining QL impact research and commercialisation for the social good
共同创建有关育儿和父亲包容性实践的数字教育:将 QL 影响研究与商业化相结合,造福社会
  • 批准号:
    MR/Y00356X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.17万
  • 项目类别:
    Fellowship
Games for Good
公益游戏
  • 批准号:
    EP/X042596/1
  • 财政年份:
    2024
  • 资助金额:
    $ 5.17万
  • 项目类别:
    Research Grant
Postdoctoral Fellowship: OCE-PRF: Do dead shells make good homes? Assessing the Development, Stability, and Evolution of Shell Gravel Habitats Across Space and Time
博士后奖学金:OCE-PRF:死去的贝壳能成为美好的家园吗?
  • 批准号:
    2307502
  • 财政年份:
    2024
  • 资助金额:
    $ 5.17万
  • 项目类别:
    Standard Grant
Experiences and Networks of Migrant Sex Work and Trafficking: Research on 9 Countries for Good Supporting Practices
移民性工作和贩运的经验和网络:对 9 个国家的良好支持做法的研究
  • 批准号:
    23H00059
  • 财政年份:
    2023
  • 资助金额:
    $ 5.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Clarification of "good pitches" for each pitching motion in baseball
棒球中每个投球动作的“好投球”的澄清
  • 批准号:
    23K10664
  • 财政年份:
    2023
  • 资助金额:
    $ 5.17万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了