Modelling and Mining Complex Networks
复杂网络的建模和挖掘
基本信息
- 批准号:RGPIN-2017-04402
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the big data era, data is considered as the new fossil fuel. Every human-technology interaction, or sensor network, generates new data points that can be viewed, based on the type of interaction, as a self-organizing network. In these networks (for example, Facebook) nodes not only contain some useful information (such as user's profile, photos, tags) but are also internally connected to other nodes (relations based on friendship, similar users behaviour, age, geographic location). Such networks are large-scale, self-organizing, decentralized, and evolve dynamically over time. As a result, random geometric graphs turn out to be natural and well suited in modelling them. Understanding the principles driving the organization and behaviour of complex networks, as well as algorithms based on these networks, is crucial for a broad range of fields, including information and social sciences, economics, biology, and neuroscience.
在大数据时代,数据被认为是新的化石燃料。每一次人类与技术的互动,或传感器网络,都会产生新的数据点,这些数据点可以被看作是一个自组织的网络,基于互动的类型。在这些网络(例如Facebook)中,节点不仅包含一些有用的信息(如用户的个人资料、照片、标签),而且还在内部连接到其他节点(基于友谊的关系、相似的用户行为、年龄、地理位置)。这样的网络是大规模的、自组织的、分散的,并且随着时间的推移而动态发展。因此,随机几何图是很自然的,很适合建模。理解驱动复杂网络的组织和行为的原理,以及基于这些网络的算法,对于包括信息和社会科学、经济学、生物学和神经科学在内的广泛领域至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pralat, Pawel其他文献
Scale-Free Graphs of Increasing Degree
- DOI:
10.1002/rsa.20318 - 发表时间:
2011-07-01 - 期刊:
- 影响因子:1
- 作者:
Cooper, Colin;Pralat, Pawel - 通讯作者:
Pralat, Pawel
Emergence of segregation in evolving social networks
- DOI:
10.1073/pnas.1014486108 - 发表时间:
2011-05-24 - 期刊:
- 影响因子:11.1
- 作者:
Henry, Adam Douglas;Pralat, Pawel;Zhang, Cun-Quan - 通讯作者:
Zhang, Cun-Quan
Burning number of graph products
- DOI:
10.1016/j.tcs.2018.06.036 - 发表时间:
2018-10-25 - 期刊:
- 影响因子:1.1
- 作者:
Mitsche, Dieter;Pralat, Pawel;Roshanbin, Elham - 通讯作者:
Roshanbin, Elham
Pralat, Pawel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pralat, Pawel', 18)}}的其他基金
Modelling and Mining Complex Networks
复杂网络的建模和挖掘
- 批准号:
RGPIN-2022-03804 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Modelling and Mining Complex Networks
复杂网络的建模和挖掘
- 批准号:
RGPIN-2017-04402 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Modelling and Mining Complex Networks
复杂网络的建模和挖掘
- 批准号:
RGPIN-2017-04402 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
COVID-19: Agent-based framework for modelling pandemics in urban environment
COVID-19:基于代理的城市环境流行病建模框架
- 批准号:
555131-2020 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Alliance Grants
Modelling and Mining Complex Networks
复杂网络的建模和挖掘
- 批准号:
RGPIN-2017-04402 - 财政年份:2019
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Blockchain technology symposium 2018
2018区块链技术研讨会
- 批准号:
524916-2018 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Connect Grants Level 2
Modelling and Mining Complex Networks
复杂网络的建模和挖掘
- 批准号:
RGPIN-2017-04402 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Online detection of users' anomalous activities on confidential file sharing platform
机密文件共享平台用户异常行为在线检测
- 批准号:
533248-2018 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
Industrial panel at 14th workshop on algorithms and models for the web graph
第 14 届网络图算法和模型研讨会工业小组
- 批准号:
513239-2017 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Connect Grants Level 2
相似国自然基金
基于Genome mining技术研究抑制表皮葡萄球菌生物膜形成的次级代谢产物
- 批准号:21242003
- 批准年份:2012
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
DISES Investigating mercury biogeochemical cycling via mixed-methods in complex artisanal gold mining landscapes and implications for community health
DISES 通过混合方法研究复杂手工金矿景观中的汞生物地球化学循环及其对社区健康的影响
- 批准号:
2307870 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Modelling and Mining Complex Networks as Hypergraphs
将复杂网络建模和挖掘为超图
- 批准号:
577565-2022 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Alliance Grants
Modelling and Mining Complex Networks
复杂网络的建模和挖掘
- 批准号:
RGPIN-2022-03804 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Towards an integrated, self-learning stochastic mining complex framework and new digital technologies for the sustainable development of mineral resources
为矿产资源的可持续发展建立一个集成的、自学习的随机采矿复杂框架和新的数字技术
- 批准号:
RGPIN-2021-02777 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Mining Complex Interconnected Data
挖掘复杂的互联数据
- 批准号:
RGPIN-2019-05167 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Mining Complex Interconnected Data
挖掘复杂的互联数据
- 批准号:
RGPIN-2019-05167 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Modelling and Mining Complex Networks
复杂网络的建模和挖掘
- 批准号:
RGPIN-2017-04402 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
III: Medium: Collaborative Research: Mining and Leveraging Knowledge Hypercubes for Complex Applications
III:媒介:协作研究:挖掘和利用知识超立方体进行复杂应用
- 批准号:
2141037 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Continuing Grant
Mining Complex Interconnected Data
挖掘复杂的互联数据
- 批准号:
RGPIN-2019-05167 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Modelling and Mining Complex Networks
复杂网络的建模和挖掘
- 批准号:
RGPIN-2017-04402 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual