New Developments in Nonparametric Bayesian Inference; Univariate and Multivariate time series with infinite varaince.
非参数贝叶斯推理的新进展;
基本信息
- 批准号:203276-2013
- 负责人:
- 金额:$ 0.8万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The applicant's research program is concentrated on two major subjects in statistical inference. The first subject is mainly related to Bayesian inference. In the Bayesian paradigm, the statisticians considers having a probabilistic prior knowledge on some unknown parameters. Later, the collected data is used to update their prior knowledge under the chosen model. A nonparametric Bayesian model considers the prior knowledge in a much more general framework with minimal restrictions. The applicant's research area in this field is mostly related to the construction of new processes used in nonparametric Bayesian models and the derivation of fast yet more precise approximation tools for these processes to use them in statistical inference. The applicant also derives efficient simulation techniques for such processes in order to enable practitioners to run their computer programs with faster speed. The applicant's second project investigates the large sample theory for processes which evolve in time. In Statistics, these processes are called time series. Sometimes these time series exhibit unusual and higher spikes or extremes. These spikes and the frequent observation of extremes in time series are modelled with certain random variables with infinite variance. There is extensive research for the univariate infinite variance time series but little is known for multivariate infinite variance time series. In the multivariate case, the size of the spikes in each coordinate may not be of the same type and size. The applicant's research investigates the large sample theory for the infinite variance multivariate time series. The result can be used to model time series in Finance, Telecommunications and many other fields.
申请者的研究计划集中在统计推断的两个主要科目上。第一个主题主要涉及贝叶斯推理。在贝叶斯范式中,统计学家考虑对一些未知参数具有概率先验知识。随后,收集的数据被用来更新他们在所选模型下的先验知识。非参数贝叶斯模型在一个更一般的框架中考虑先验知识,具有最小的限制。申请人在这一领域的研究领域主要涉及非参数贝叶斯模型中使用的新过程的构建,以及为这些过程推导快速但更精确的近似工具,以便将它们用于统计推断。申请人还为这些过程推导出有效的模拟技术,以便使实践者能够以更快的速度运行他们的计算机程序。申请人的第二个项目是研究随时间演化的过程的大样本理论。在统计学中,这些过程被称为时间序列。有时,这些时间序列表现出不寻常的、更高的尖峰或极端。这些尖峰和时间序列中经常观察到的极值是用某些具有无穷方差的随机变量来建模的。人们对单变量无限方差时间序列进行了广泛的研究,但对多变量无限方差时间序列的研究却很少。在多变量情况下,每个坐标中的尖峰的大小可能不是相同的类型和大小。申请人的研究是对无限方差多变量时间序列的大样本理论的研究。所得结果可用于金融、电信等诸多领域的时间序列建模。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zarepour, Mahmoud其他文献
A Bayesian nonparametric goodness of fit test for right censored data based on approximate samples from the beta-Stacy process
- DOI:
10.1002/cjs.11188 - 发表时间:
2013-09-01 - 期刊:
- 影响因子:0.6
- 作者:
Al Labadi, Luai;Zarepour, Mahmoud - 通讯作者:
Zarepour, Mahmoud
Zarepour, Mahmoud的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zarepour, Mahmoud', 18)}}的其他基金
Nonparametric Bayesian inference with single and multivariate random probability measures; heavy tailed time series.
使用单变量和多元随机概率测量的非参数贝叶斯推理;
- 批准号:
RGPIN-2018-04008 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Bayesian inference with single and multivariate random probability measures; heavy tailed time series.
使用单变量和多元随机概率测量的非参数贝叶斯推理;
- 批准号:
RGPIN-2018-04008 - 财政年份:2021
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Bayesian inference with single and multivariate random probability measures; heavy tailed time series.
使用单变量和多元随机概率测量的非参数贝叶斯推理;
- 批准号:
RGPIN-2018-04008 - 财政年份:2020
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Bayesian inference with single and multivariate random probability measures; heavy tailed time series.
使用单变量和多元随机概率测量的非参数贝叶斯推理;
- 批准号:
RGPIN-2018-04008 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Nonparametric Bayesian inference with single and multivariate random probability measures; heavy tailed time series.
使用单变量和多元随机概率测量的非参数贝叶斯推理;
- 批准号:
RGPIN-2018-04008 - 财政年份:2018
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
New Developments in Nonparametric Bayesian Inference; Univariate and Multivariate time series with infinite varaince.
非参数贝叶斯推理的新进展;
- 批准号:
203276-2013 - 财政年份:2015
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
New Developments in Nonparametric Bayesian Inference; Univariate and Multivariate time series with infinite varaince.
非参数贝叶斯推理的新进展;
- 批准号:
203276-2013 - 财政年份:2014
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
New Developments in Nonparametric Bayesian Inference; Univariate and Multivariate time series with infinite varaince.
非参数贝叶斯推理的新进展;
- 批准号:
203276-2013 - 财政年份:2013
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
New developments in Nonparametric Bayesian Inference; Univariate and Multivariate time series with infinite variance.
非参数贝叶斯推理的新进展;
- 批准号:
203276-2012 - 财政年份:2012
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Some new tools in nonparametric bayesian inference / time series with infinite variance
非参数贝叶斯推理/无限方差时间序列中的一些新工具
- 批准号:
203276-2007 - 财政年份:2011
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
相似海外基金
Brunel University London and PB Design and Developments Limited KTP 22_23 R5
伦敦布鲁内尔大学和 PB Design and Developments Limited KTP 22_23 R5
- 批准号:
10064693 - 财政年份:2024
- 资助金额:
$ 0.8万 - 项目类别:
Knowledge Transfer Partnership
Developments of cosmic muometric buoy
宇宙测微浮标的进展
- 批准号:
23H01264 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New developments in aromatic architect: optimization of structures and spaces and created by pi-conjugated systems and functionalization
芳香建筑师的新发展:结构和空间的优化以及π共轭系统和功能化的创造
- 批准号:
23H01944 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
- 批准号:
23K07559 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
- 批准号:
23K03064 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
- 批准号:
23K03139 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
- 批准号:
23K12950 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New developments in Javanese Homo erectus research using synchrotron, proteomics and high precision dating
利用同步加速器、蛋白质组学和高精度测年技术进行爪哇直立人研究的新进展
- 批准号:
23K17404 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Developments of game theory played on networks with incomplete information and their applications to public policies
不完全信息网络博弈论的发展及其在公共政策中的应用
- 批准号:
23K01343 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developments of variational quantum algorithms based on circuit structure optimization
基于电路结构优化的变分量子算法研究进展
- 批准号:
23K03266 - 财政年份:2023
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




