New developments in Nonparametric Bayesian Inference; Univariate and Multivariate time series with infinite variance.

非参数贝叶斯推理的新进展;

基本信息

  • 批准号:
    203276-2012
  • 负责人:
  • 金额:
    $ 0.87万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2012
  • 资助国家:
    加拿大
  • 起止时间:
    2012-01-01 至 2013-12-31
  • 项目状态:
    已结题

项目摘要

The applicant's research project is concentrated on two major subjects in statistical inference. The first subject is mainly related to Bayesian inference. In the Bayesian paradigm, the statisticians consider having a probabilistic prior knowledge on some unknown parameters. Later, the collected data is used to update their prior knowledge under the chosen model. A nonparametric Bayesian model considers his prior knowledge in
申请人的研究项目集中在统计推断的两个主要主题上。第一个主题主要与贝叶斯推理有关。在贝叶斯范式中,统计学家考虑对某些未知参数拥有概率先验知识。随后,收集到的数据用于更新所选模型下的先验知识。非参数贝叶斯模型考虑了他的先验知识

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zarepour, Mahmoud其他文献

A Bayesian nonparametric goodness of fit test for right censored data based on approximate samples from the beta-Stacy process

Zarepour, Mahmoud的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zarepour, Mahmoud', 18)}}的其他基金

Nonparametric Bayesian inference with single and multivariate random probability measures; heavy tailed time series.
使用单变量和多元随机概率测量的非参数贝叶斯推理;
  • 批准号:
    RGPIN-2018-04008
  • 财政年份:
    2022
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric Bayesian inference with single and multivariate random probability measures; heavy tailed time series.
使用单变量和多元随机概率测量的非参数贝叶斯推理;
  • 批准号:
    RGPIN-2018-04008
  • 财政年份:
    2021
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric Bayesian inference with single and multivariate random probability measures; heavy tailed time series.
使用单变量和多元随机概率测量的非参数贝叶斯推理;
  • 批准号:
    RGPIN-2018-04008
  • 财政年份:
    2020
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric Bayesian inference with single and multivariate random probability measures; heavy tailed time series.
使用单变量和多元随机概率测量的非参数贝叶斯推理;
  • 批准号:
    RGPIN-2018-04008
  • 财政年份:
    2019
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Nonparametric Bayesian inference with single and multivariate random probability measures; heavy tailed time series.
使用单变量和多元随机概率测量的非参数贝叶斯推理;
  • 批准号:
    RGPIN-2018-04008
  • 财政年份:
    2018
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
New Developments in Nonparametric Bayesian Inference; Univariate and Multivariate time series with infinite varaince.
非参数贝叶斯推理的新进展;
  • 批准号:
    203276-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
New Developments in Nonparametric Bayesian Inference; Univariate and Multivariate time series with infinite varaince.
非参数贝叶斯推理的新进展;
  • 批准号:
    203276-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
New Developments in Nonparametric Bayesian Inference; Univariate and Multivariate time series with infinite varaince.
非参数贝叶斯推理的新进展;
  • 批准号:
    203276-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
New Developments in Nonparametric Bayesian Inference; Univariate and Multivariate time series with infinite varaince.
非参数贝叶斯推理的新进展;
  • 批准号:
    203276-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual
Some new tools in nonparametric bayesian inference / time series with infinite variance
非参数贝叶斯推理/无限方差时间序列中的一些新工具
  • 批准号:
    203276-2007
  • 财政年份:
    2011
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Brunel University London and PB Design and Developments Limited KTP 22_23 R5
伦敦布鲁内尔大学和 PB Design and Developments Limited KTP 22_23 R5
  • 批准号:
    10064693
  • 财政年份:
    2024
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Knowledge Transfer Partnership
Developments of cosmic muometric buoy
宇宙测微浮标的进展
  • 批准号:
    23H01264
  • 财政年份:
    2023
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New developments in aromatic architect: optimization of structures and spaces and created by pi-conjugated systems and functionalization
芳香建筑师的新发展:结构和空间的优化以及π共轭系统和功能化的创造
  • 批准号:
    23H01944
  • 财政年份:
    2023
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developments of research on graphs by representations of noncommutative algebras
非交换代数表示图的研究进展
  • 批准号:
    23K03064
  • 财政年份:
    2023
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments on quantum information analysis by a stochastic analysis based on theory of spaces consisting of generalized functionals
基于广义泛函空间理论的随机分析量子信息分析新进展
  • 批准号:
    23K03139
  • 财政年份:
    2023
  • 资助金额:
    $ 0.87万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Investigating the role of public transit on health behaviors among older adults with disabilities
调查公共交通对残疾老年人健康行为的作用
  • 批准号:
    10644067
  • 财政年份:
    2023
  • 资助金额:
    $ 0.87万
  • 项目类别:
Dissemination Core
传播核心
  • 批准号:
    10735584
  • 财政年份:
    2023
  • 资助金额:
    $ 0.87万
  • 项目类别:
Administrative Core
行政核心
  • 批准号:
    10762158
  • 财政年份:
    2023
  • 资助金额:
    $ 0.87万
  • 项目类别:
Using Patients' Stated Preferences to Inform and Support Proxy Decision-making during Palliative Treatment: Instrument Development and Evaluation
在姑息治疗期间利用患者陈述的偏好来告知和支持代理决策:仪器开发和评估
  • 批准号:
    10819002
  • 财政年份:
    2023
  • 资助金额:
    $ 0.87万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了