Semiparametic Efficient Inference Methods in Complex Data Models

复杂数据模型中的半参数高效推理方法

基本信息

  • 批准号:
    RGPIN-2016-06002
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Nowadays more and more massive and high-dimensional data become available in many scientific fields such as medical and health science, astronomy and physics, computer science and engineering, as well as economics and finance. A challenging task in high-dimensional data analysis is how to select the most relevant predictors among a large number of candidate variables to accurately predict a response variable of interest. High-dimensional variable selection problem has drawn a lot of attention in statistics, as well as in computer science and engineering. However, most research has been focusing on linear models where all variables are assumed to be precisely measured. On the other hand, real data applications always involve nonlinear relationships and variables that are either not directly observable or imprecisely measured. Therefore it is of theoretical and practical interests to study the high-dimensional variable selection problem in measurement error models. One possible direction of investigation is novel regularization methods that incorporate instrumental variables. Moreover, nonlinear relationships will be investigated because they arise in many fields including compressive sensing, signal processing and imaging.
如今,医学卫生科学、天文物理、计算机科学与工程以及经济金融等诸多科学领域都有越来越多的海量高维数据可用。高维数据分析中的一个具有挑战性的任务是如何在大量的候选变量中选择最相关的预测值,以准确地预测感兴趣的响应变量。高维变量选择问题在统计学、计算机科学和工程等领域都受到了广泛的关注。然而,大多数研究一直集中在线性模型上,其中所有变量都被假设为精确测量。另一方面,实际数据应用总是涉及非线性关系和变量,这些关系和变量要么不能直接观察到,要么不能精确测量。因此,研究测量误差模型中的高维变量选择问题具有重要的理论意义和实用价值。一个可能的研究方向是结合工具变量的新的正则化方法。此外,还将研究非线性关系,因为它们出现在许多领域,包括压缩传感、信号处理和成像。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wang, Liqun其他文献

Supplemental enzymes and probiotics on the gut health of broilers fed with a newly harvested corn diet.
  • DOI:
    10.1016/j.psj.2023.102740
  • 发表时间:
    2023-07
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Luo, Caiwei;Wang, Liqun;Yuan, Jianmin
  • 通讯作者:
    Yuan, Jianmin
In vivo degradation and histocompatibility of a novel class of fluorescent copolyanhydrides, poly{[di(p-carboxyphenyl) succinate]-co-(sebacic anhydride)}
一类新型荧光共聚酸酐聚{[二(对羧基苯基)琥珀酸酯]-共-(癸二酸酐)}的体内降解和组织相容性
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Jiang, Hongliang;Fan, Jun;Li, Yan;Tang, Guping;Wang, Liqun
  • 通讯作者:
    Wang, Liqun
Facilitating two-electron oxygen reduction with pyrrolic nitrogen sites for electrochemical hydrogen peroxide production.
  • DOI:
    10.1038/s41467-023-40118-y
  • 发表时间:
    2023-07-22
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Peng, Wei;Liu, Jiaxin;Liu, Xiaoqing;Wang, Liqun;Yin, Lichang;Tan, Haotian;Hou, Feng;Liang, Ji
  • 通讯作者:
    Liang, Ji
Electrocatalytic Oxygen Reduction to Produce Hydrogen Peroxide: Rational Design from Single-Atom Catalysts to Devices.
电催化氧还原生产过氧化氢:从单原子催化剂到装置的合理设计
  • DOI:
    10.1007/s41918-022-00163-5
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    31.3
  • 作者:
    Tong, Yueyu;Wang, Liqun;Hou, Feng;Dou, Shi Xue;Liang, Ji
  • 通讯作者:
    Liang, Ji
Highly symmetric polyhedral Cu2O crystals with controllable-index planes
具有可控折射率面的高度对称多面体 Cu2O 晶体
  • DOI:
    10.1039/c0ce00679c
  • 发表时间:
    2011-04
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Sun, Shaodong;Kong, Chuncai;Yang, Shengchun;Wang, Liqun;Song, Xiaoping;Ding, Bingjun;Yang, Zhimao
  • 通讯作者:
    Yang, Zhimao

Wang, Liqun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wang, Liqun', 18)}}的其他基金

Semiparametic Efficient Inference Methods in Complex Data Models
复杂数据模型中的半参数高效推理方法
  • 批准号:
    RGPIN-2016-06002
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Semiparametic Efficient Inference Methods in Complex Data Models
复杂数据模型中的半参数高效推理方法
  • 批准号:
    RGPIN-2016-06002
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Semiparametic Efficient Inference Methods in Complex Data Models
复杂数据模型中的半参数高效推理方法
  • 批准号:
    RGPIN-2016-06002
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Semiparametic Efficient Inference Methods in Complex Data Models
复杂数据模型中的半参数高效推理方法
  • 批准号:
    RGPIN-2016-06002
  • 财政年份:
    2016
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear statistical inference and boundary crossing probabilities
非线性统计推断和边界交叉概率
  • 批准号:
    227197-2009
  • 财政年份:
    2014
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear statistical inference and boundary crossing probabilities
非线性统计推断和边界交叉概率
  • 批准号:
    227197-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear statistical inference and boundary crossing probabilities
非线性统计推断和边界交叉概率
  • 批准号:
    227197-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear statistical inference and boundary crossing probabilities
非线性统计推断和边界交叉概率
  • 批准号:
    227197-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear statistical inference and boundary crossing probabilities
非线性统计推断和边界交叉概率
  • 批准号:
    227197-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Nonlinear statistical inference and boundary crossing probabilities
非线性统计推断和边界交叉概率
  • 批准号:
    227197-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
CAREER: Efficient Large Language Model Inference Through Codesign: Adaptable Software Partitioning and FPGA-based Distributed Hardware
职业:通过协同设计进行高效的大型语言模型推理:适应性软件分区和基于 FPGA 的分布式硬件
  • 批准号:
    2339084
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
CAREER: Designing Ultra-Energy-Efficient Intelligent Hardware with On-Chip Learning, Attention, and Inference
职业:设计具有片上学习、注意力和推理功能的超节能智能硬件
  • 批准号:
    2336012
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
Efficient simulation and inference under approximate models of ancestry
祖先近似模型下的高效模拟和推理
  • 批准号:
    EP/X022595/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Research Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2243053
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Efficient simulation and inference under approximate models of ancestry
祖先近似模型下的高效模拟和推理
  • 批准号:
    EP/X024881/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Research Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2243052
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Semiparametric Efficient and Robust Inference on High-Dimensional Data
高维数据的半参数高效鲁棒推理
  • 批准号:
    2310578
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
SHF: Medium: Language Support for Sound and Efficient Programmable Inference
SHF:中:对健全且高效的可编程推理的语言支持
  • 批准号:
    2311983
  • 财政年份:
    2023
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
Efficient and robust inference for regularization with regular and functional data
使用常规数据和函数数据进行高效且稳健的正则化推理
  • 批准号:
    RGPIN-2016-06366
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了