Flexible Dependence Models for Multivariate Data
多元数据的灵活依赖模型
基本信息
- 批准号:435943-2013
- 负责人:
- 金额:$ 1.46万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The last three decades have witnessed fascinating scientific discoveries, from the expansion of our universe to the completion of human genome. These could only be imagined in the realms of science fiction just a century ago. Modern technology plays a pivotal role in these achievements by enabling scientists to collect hard-to-reach data and in massive amounts. However, converting the information in data to meaningful knowledge is always what we are indebted to proper statistical analysis, directed by scientists' expertise.This research program focuses on extracting and characterizing dependence information concealed in multivariate data.To extract dependence, we use a machinery called copula that separates marginal characteristics of variables from their joint behaviour, and to characterize dependence we propose nonparametric strategies that are flexible enough to capture (1) dynamic conditional dependencies, and (2) complex interrelations among a large number of variables. Our methodological contributions will greatly extend the capabilities and flexibility of copula-based dependence models in applications.The proposed methods can be used to shed light into, for instance, studies of skeletal anatomy by revealing bone and muscle interactions, twin or family studies by detecting the shared characteristics that affect co-twin or familial dependence, or water quality monitoring in hydrological systems by specifying dependencies between the level of different hazards. In particular, this research will offer elaborate analyses of conditional and joint dependencies of water-quality measurements to the Manitoba Great Lakes Project of the University of Manitoba.
在过去的三十年里,从宇宙的膨胀到人类基因组的完成,我们见证了令人着迷的科学发现。这些只能在世纪前的科幻小说中想象。现代技术在这些成就中发挥了关键作用,使科学家能够收集大量难以获得的数据。然而,将数据中的信息转化为有意义的知识始终需要科学家专业知识指导下进行适当的统计分析。该研究计划重点在于提取和表征隐藏在多元数据中的相关信息。为了提取相关性,我们使用一种称为copula的机器,它将变量的边缘特征与它们的联合行为分开,为了描述依赖性,我们提出了非参数策略,这些策略足够灵活,可以捕获(1)动态条件依赖性,以及(2)大量变量之间的复杂相互关系。我们的方法学贡献将极大地扩展基于Copula的依赖模型在应用中的能力和灵活性,例如,所提出的方法可以用于揭示骨骼和肌肉相互作用的骨骼解剖学研究,通过检测影响双胞胎或家族依赖的共同特征的双胞胎或家族研究,或通过指定不同危害程度之间的依赖关系来监测水文系统中的水质。特别是,这项研究将提供详细的分析条件和联合依赖的水质测量的马尼托巴五大湖项目的马尼托巴大学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Acar, Elif其他文献
Tumor-Infiltrating Lymphocytes (TIL), Tertiary Lymphoid Structures (TLS), and Expression of PD-1, TIM-3, LAG-3 on TIL in Invasive and In Situ Ductal Breast Carcinomas and Their Relationship with Prognostic Factors
- DOI:
10.1016/j.clbc.2022.08.005 - 发表时间:
2022-11-21 - 期刊:
- 影响因子:3.1
- 作者:
Acar, Elif;Esendagli, Guldal;Dursun, Ayse - 通讯作者:
Dursun, Ayse
Morphological and functional trait divergence in endemic fish populations along the small-scale karstic stream.
- DOI:
10.1186/s40850-023-00191-8 - 发表时间:
2023-12-11 - 期刊:
- 影响因子:1.6
- 作者:
Acar, Elif;Kaymak, Nehir - 通讯作者:
Kaymak, Nehir
Research Burden of Interstitial Lung Diseases in Turkey - RBILD.
- DOI:
10.36141/svdld.v39i1.12269 - 发表时间:
2022 - 期刊:
- 影响因子:1.6
- 作者:
Aycicek, Olcay;Cetinkaya, Erdogan;Ucsular, Fatma Demirci;Bayram, Nazan;Senyigit, Abdurrahman;Aksel, Nimet;Atilla, Nurhan;Niksarlioglu, Elif Yelda;Ilgazli, Ahmet;Kilic, Talat;Gunbatar, Hulya;Cilekar, Sule;Ekici, Aydanur;Arinc, Sibel;Bircan, Haci Ahmet;Duman, Dildar;Dikis, Ozlem Sengoren;Yazici, Onur;Kansu, Abdullah;Tutar, Nuri;Ozsari, Emine;Berk, Serdar;Varol, Yelda;Erbaycu, Ahmet Emin;Cortuk, Mustafa;Karadeniz, Gulistan;Simsek, Alper;Sezgi, Cengizhan C.;Erel, Fuat;Ciftci, Tuba;Sunnetcioglu, Aysel;Ekici, Mehmet Savas;Gunay, Ersin;Agca, Meltem;Ozturk, Onder;Ogun, Hamza;Acar, Elif;Dogan, Omer Tamer;Alizoroglu, Dursun;Gezer, Esma;Ozlu, Tevfik - 通讯作者:
Ozlu, Tevfik
Acar, Elif的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Acar, Elif', 18)}}的其他基金
Dependence Models for Complex and Massive Data
复杂海量数据的依赖模型
- 批准号:
RGPIN-2020-06753 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Dependence Models for Complex and Massive Data
复杂海量数据的依赖模型
- 批准号:
RGPIN-2020-06753 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Flexible Dependence Models for Multivariate Data
多元数据的灵活依赖模型
- 批准号:
435943-2013 - 财政年份:2018
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Flexible Dependence Models for Multivariate Data
多元数据的灵活依赖模型
- 批准号:
435943-2013 - 财政年份:2015
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Flexible Dependence Models for Multivariate Data
多元数据的灵活依赖模型
- 批准号:
435943-2013 - 财政年份:2014
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Flexible Dependence Models for Multivariate Data
多元数据的灵活依赖模型
- 批准号:
435943-2013 - 财政年份:2013
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于时间序列间分位相依性(quantile dependence)的风险值(Value-at-Risk)预测模型研究
- 批准号:71903144
- 批准年份:2019
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
PRECLINICAL MEDICATIONS SCREENING IN DEPENDENCE, AFFECT AND PAIN MODELS OF ALCOHOLISM
酗酒的依赖性、影响和疼痛模型的临床前药物筛选
- 批准号:
10953233 - 财政年份:2023
- 资助金额:
$ 1.46万 - 项目类别:
Evolution of statistical earthquake models to account for measurement errors and dependence.
统计地震模型的演变以考虑测量误差和依赖性。
- 批准号:
2753579 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Studentship
Dependence Models for Complex and Massive Data
复杂海量数据的依赖模型
- 批准号:
RGPIN-2020-06753 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Models and methods of statistical dependence with applications in clinical trials and risk management
统计依赖性模型和方法及其在临床试验和风险管理中的应用
- 批准号:
RGPIN-2018-05362 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
functional linear regression, graphical models and dependence modelling
函数线性回归、图形模型和依赖性建模
- 批准号:
RGPIN-2020-04602 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Risk models with dependence: construction, properties, and risk measurement
具有依赖性的风险模型:构造、属性和风险测量
- 批准号:
RGPIN-2020-05605 - 财政年份:2022
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Dependence in actuarial science: multivariate models, risk assessment and claim reserving
精算科学中的依赖性:多元模型、风险评估和索赔准备金
- 批准号:
RGPIN-2017-04273 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Risk models with dependence: construction, properties, and risk measurement
具有依赖性的风险模型:构造、属性和风险测量
- 批准号:
RGPIN-2020-05605 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
functional linear regression, graphical models and dependence modelling
函数线性回归、图形模型和依赖性建模
- 批准号:
RGPIN-2020-04602 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual
Models and methods of statistical dependence with applications in clinical trials and risk management
统计依赖性模型和方法及其在临床试验和风险管理中的应用
- 批准号:
RGPIN-2018-05362 - 财政年份:2021
- 资助金额:
$ 1.46万 - 项目类别:
Discovery Grants Program - Individual