Models and methods of statistical dependence with applications in clinical trials and risk management

统计依赖性模型和方法及其在临床试验和风险管理中的应用

基本信息

  • 批准号:
    RGPIN-2018-05362
  • 负责人:
  • 金额:
    $ 2.62万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

To develop innovative statistical theory with significant impact to a broad range of applications, we must identify essential characteristics of robust and powerful statistical methods that effectively address significant methodological and practical challenges, including complex data structures (such as dependent observations), special (such as heavy tailed) distributions, and peculiar tasks of informed decision making in the face of dynamic trade-off between exploration (i.e., statistical learning) and exploitation (i.e., immediate payoff). My long-term research program has been motivated by developing statistical models and methods that address complex ethical, methodological and practical issues arising from important socio-economic needs including pharmaceutical innovation and insurance practice. My overarching goal is to develop a theoretical framework of statistical exploration versus exploitation trade-off for a broad range of settings and a wide spectrum of applications, and develop statistical methods for applying such models to practical situations of sequential statistical learning and informed decision making under statistical uncertainty and stochastic dependence.To achieve my long-term research goals, this NSERC proposal is focused on specific objectives of risk management and statistical design of clinical trials. We investigate value at risk for aggregated dependent losses using copulas and extend to dynamic risk measures. We also investigate investment and/or reinsurance decisions to minimize the risk of ruin when the claim frequency distribution is unknown and/or the claim size distribution is unknown. We use copulas to improve seamless Phase I/II clinical trials by optimally balancing the trade-off between toxicity and efficacy, and investigate the optimal design of Phase I clinical trials with combination drugs and Phases II and III clinical trials with personalized medicine. The proposed research is important to the insurance industry and public health care. Risk measures are used to assist insurance companies to prevent ruin. Optimal designs of various phases of clinical trials help improve the ethics and efficiency of drug development without undermining the validity and integrity of clinical research. The proposed research program is also important for training HQP on interdisciplinary research. I propose to train 3 post-doctoral fellows, 4 Ph.D. students, and 3 M.Sc. students, including my current 2 Ph.D. students. The highly qualified personnel will be involved in all stages of the proposed research program and objectives. I anticipate over 10 publications and many conference presentations from the proposed research. I will train HQPs to become the next generation of researchers and prepare them for successful careers in academia and industries in Canada.
为了开发对广泛的应用具有重大影响的创新统计理论,我们必须确定稳健和强大的统计方法的基本特征,以有效地解决重大的方法和实践挑战,包括复杂的数据结构(如相依观测)、特殊的(如重尾)分布,以及面对探索(即统计学习)和开发(即直接收益)之间的动态权衡时的知情决策的特殊任务。我的长期研究计划的动机是开发统计模型和方法,以解决因重要的社会经济需求而产生的复杂的伦理、方法和实践问题,包括药品创新和保险实践。我的总体目标是为广泛的设置和广泛的应用建立一个统计探索和开发权衡的理论框架,并开发统计方法,将这些模型应用于统计不确定性和随机依赖下的序贯统计学习和知情决策的实际情况。为了实现我的长期研究目标,NSERC的建议集中在临床试验的风险管理和统计设计的具体目标上。我们使用Copulas研究累积相依损失的风险价值,并将其扩展到动态风险度量。我们还研究了当索赔频率分布未知和/或索赔规模分布未知时,投资和/或再保险决策以最小化破产风险。我们使用Copulas通过在毒性和有效性之间进行最佳平衡来改进无缝的I/II期临床试验,并研究组合药物的I期临床试验和个性化药物的II和III期临床试验的最佳设计。这项拟议的研究对保险业和公共卫生保健具有重要意义。风险措施被用来帮助保险公司防止破产。临床试验各阶段的优化设计有助于提高药物开发的伦理和效率,而不会破坏临床研究的有效性和完整性。拟议的研究计划对于培训HQP进行跨学科研究也很重要。我建议培养3名博士后研究员、4名博士生和3名硕士研究生。学生们,包括我现在的两名博士生。高素质的人员将参与拟议研究计划和目标的所有阶段。我预计这项拟议的研究将发表10多篇文章,并发表许多会议报告。我将培训HQP成为下一代研究人员,并为他们在加拿大学术界和工业界成功的职业生涯做好准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wang, Xikui其他文献

Uptake, Translocation, and Fate of Carcinogenic Aristolochic Acid in Typical Vegetables in Soil-Plant Systems.
土壤植物系统中典型蔬菜对致癌马兜铃酸的吸收、易位和归宿
  • DOI:
    10.3390/molecules27238271
  • 发表时间:
    2022-11-27
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Zhang, Jinghe;Wang, Yinan;Wang, Changhong;Li, Kan;Tang, Weifang;Sun, Jing;Wang, Xikui
  • 通讯作者:
    Wang, Xikui
Engineering the Dimensional Interface of BiVO4-2D Reduced Graphene Oxide (RGO) Nanocomposite for Enhanced Visible Light Photocatalytic Performance
  • DOI:
    10.3390/nano9060907
  • 发表时间:
    2019-06-01
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Sun, Jing;Wang, Chunxiao;Wang, Xikui
  • 通讯作者:
    Wang, Xikui
Bridging BAD Islands: Declarative Data Sharing at Scale
弥合 BAD 孤岛:大规模声明式数据共享
BAD to the bone: Big Active Data at its core
  • DOI:
    10.1007/s00778-020-00616-7
  • 发表时间:
    2020-05-23
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Jacobs, Steven;Wang, Xikui;Uddin, Md Yusuf Sarwar
  • 通讯作者:
    Uddin, Md Yusuf Sarwar
Degradation of azo dye direct sky blue 5B by sonication combined with zero-valent iron
  • DOI:
    10.1016/j.ultsonch.2011.03.026
  • 发表时间:
    2011-09-01
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Chen, Bing;Wang, Xikui;Li, Shuping
  • 通讯作者:
    Li, Shuping

Wang, Xikui的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wang, Xikui', 18)}}的其他基金

Models and methods of statistical dependence with applications in clinical trials and risk management
统计依赖性模型和方法及其在临床试验和风险管理中的应用
  • 批准号:
    RGPIN-2018-05362
  • 财政年份:
    2021
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Models and methods of statistical dependence with applications in clinical trials and risk management
统计依赖性模型和方法及其在临床试验和风险管理中的应用
  • 批准号:
    RGPIN-2018-05362
  • 财政年份:
    2020
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Models and methods of statistical dependence with applications in clinical trials and risk management
统计依赖性模型和方法及其在临床试验和风险管理中的应用
  • 批准号:
    RGPIN-2018-05362
  • 财政年份:
    2019
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Models and methods of statistical dependence with applications in clinical trials and risk management
统计依赖性模型和方法及其在临床试验和风险管理中的应用
  • 批准号:
    RGPIN-2018-05362
  • 财政年份:
    2018
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal statistical exploration and exploitation: theory, methods and applications
最优统计探索和利用:理论、方法和应用
  • 批准号:
    217441-2013
  • 财政年份:
    2017
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal statistical exploration and exploitation: theory, methods and applications
最优统计探索和利用:理论、方法和应用
  • 批准号:
    217441-2013
  • 财政年份:
    2016
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal statistical exploration and exploitation: theory, methods and applications
最优统计探索和利用:理论、方法和应用
  • 批准号:
    217441-2013
  • 财政年份:
    2015
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal statistical exploration and exploitation: theory, methods and applications
最优统计探索和利用:理论、方法和应用
  • 批准号:
    217441-2013
  • 财政年份:
    2014
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal statistical exploration and exploitation: theory, methods and applications
最优统计探索和利用:理论、方法和应用
  • 批准号:
    217441-2013
  • 财政年份:
    2013
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual
Statistical design and analysis of response adaptive clinical trials
响应适应性临床试验的统计设计和分析
  • 批准号:
    217441-2008
  • 财政年份:
    2012
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

复杂图像处理中的自由非连续问题及其水平集方法研究
  • 批准号:
    60872130
  • 批准年份:
    2008
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Statistical Models and Methods for Complex Data in Metric Spaces
度量空间中复杂数据的统计模型和方法
  • 批准号:
    2310450
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
    Standard Grant
Optimizing the implementation of personalized risk-prediction models for venous thromboembolism among hospitalized adults
优化住院成人静脉血栓栓塞个性化风险预测模型的实施
  • 批准号:
    10658198
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Large-scale phylodynamics under non-neutral and non-treelike models of evolution
非中性和非树状进化模型下的大规模系统动力学
  • 批准号:
    10713003
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Clinical breast cancer risk prediction models for women with a high-risk benign breast diagnosis
高风险良性乳腺诊断女性的临床乳腺癌风险预测模型
  • 批准号:
    10719777
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Statistical and high-throughput models of enhancer function and evolution
增强子功能和进化的统计和高通量模型
  • 批准号:
    10846272
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Joint longitudinal and survival models for intensive longitudinal data from mobile health studies of smoking cessation
来自戒烟移动健康研究的密集纵向数据的联合纵向和生存模型
  • 批准号:
    10677935
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Dynamic embedding time series models in functional brain imaging
功能性脑成像中的动态嵌入时间序列模型
  • 批准号:
    10711521
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Interpretable Bayesian Non-linear statistical learning models for multi-omics data integration
用于多组学数据集成的可解释贝叶斯非线性统计学习模型
  • 批准号:
    10714882
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Dynamic prediction of type 1 diabetes risk and autoantibody status by a joint model of longitudinal and multistate models
通过纵向和多状态模型的联合模型动态预测1型糖尿病风险和自身抗体状态
  • 批准号:
    10630731
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
Power and sample size for generalized linear models
广义线性模型的功效和样本量
  • 批准号:
    10680962
  • 财政年份:
    2023
  • 资助金额:
    $ 2.62万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了