Novel Algorithms to Approximate the Future Consequence of Sequential Decisions

近似连续决策的未来后果的新算法

基本信息

  • 批准号:
    RGPIN-2017-04877
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Many complex problems arising in business, health care, and transportation can be modelled as sequential decision making problems under uncertainty, meaning that a decision maker has to make decisions periodically while some random events unfold over time. For instance, an airline dynamically changes the fare for different flights over a network of cities without knowing the actual future demand, trying to maximize its revenue while managing the risk of unsold seats. These problems can be conveniently modelled in the form of dynamic programs, a method that finds the best decision by maximizing the sum of immediate reward and the expected future reward. Unfortunately, for many practical problems, the number of future scenarios that one should consider in order to calculate the expected future reward function is exponentially large, making exact calculation of this function intractable. In order to overcome this issue, approximate dynamic programming (ADP) methods have been developed to find an approximate optimal solution.
在商业、医疗和交通中出现的许多复杂问题都可以建模为不确定性下的顺序决策问题,这意味着决策者必须定期做出决策,而一些随机事件会随着时间的推移而展开。例如,一家航空公司在不知道未来实际需求的情况下,动态地改变城市网络上不同航班的票价,试图在管理未售出座位风险的同时最大化收入。这些问题可以很方便地以动态规划的形式进行建模,这种方法通过最大化即时回报和预期未来回报之和来找到最佳决策。不幸的是,对于许多实际问题,为了计算预期的未来奖励函数,应该考虑的未来场景的数量是指数级的,使得该函数的精确计算变得困难。为了克服这个问题,近似动态规划(ADP)方法已被开发,以找到一个近似的最优解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SabouriBaghAbbas, Alireza其他文献

SabouriBaghAbbas, Alireza的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SabouriBaghAbbas, Alireza', 18)}}的其他基金

Novel Algorithms to Approximate the Future Consequence of Sequential Decisions
近似连续决策的未来后果的新算法
  • 批准号:
    RGPIN-2017-04877
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Algorithms to Approximate the Future Consequence of Sequential Decisions
近似连续决策的未来后果的新算法
  • 批准号:
    RGPIN-2017-04877
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Algorithms to Approximate the Future Consequence of Sequential Decisions
近似连续决策的未来后果的新算法
  • 批准号:
    RGPIN-2017-04877
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Algorithms to Approximate the Future Consequence of Sequential Decisions
近似连续决策的未来后果的新算法
  • 批准号:
    RGPIN-2017-04877
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Algorithms to Approximate the Future Consequence of Sequential Decisions
近似连续决策的未来后果的新算法
  • 批准号:
    RGPIN-2017-04877
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Novel Algorithms to Approximate the Future Consequence of Sequential Decisions
近似连续决策的未来后果的新算法
  • 批准号:
    RGPIN-2017-04877
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
A study on practical algorithms for combinatorial optimization based on approximate submodularity
基于近似子模性的组合优化实用算法研究
  • 批准号:
    22K17857
  • 财政年份:
    2022
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel Algorithms to Approximate the Future Consequence of Sequential Decisions
近似连续决策的未来后果的新算法
  • 批准号:
    RGPIN-2017-04877
  • 财政年份:
    2021
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
Novel Algorithms to Approximate the Future Consequence of Sequential Decisions
近似连续决策的未来后果的新算法
  • 批准号:
    RGPIN-2017-04877
  • 财政年份:
    2020
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Approximate Scheduling Algorithms via Mathematical Relaxations
职业:通过数学松弛的近似调度算法
  • 批准号:
    1844890
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Continuing Grant
Novel Algorithms to Approximate the Future Consequence of Sequential Decisions
近似连续决策的未来后果的新算法
  • 批准号:
    RGPIN-2017-04877
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
CRII: CIF: Approximate Message Passing Algorithms for High-Dimensional Estimation
CRII:CIF:高维估计的近似消息传递算法
  • 批准号:
    1849883
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Standard Grant
Approximate Optimization Algorithms with Theoretical Rationales in Markov Decision Processes
马尔可夫决策过程中具有理论依据的近似优化算法
  • 批准号:
    19K04904
  • 财政年份:
    2019
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Fast approximate inference methods: new algorithms, applications and theory
快速近似推理方法:新算法、应用和理论
  • 批准号:
    DP180100597
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Projects
Novel Algorithms to Approximate the Future Consequence of Sequential Decisions
近似连续决策的未来后果的新算法
  • 批准号:
    RGPIN-2017-04877
  • 财政年份:
    2018
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了