Model Predictive Control Strategies for Mixed Telerobotic/Autonomous Robotic Systems
混合远程机器人/自主机器人系统的模型预测控制策略
基本信息
- 批准号:RGPIN-2014-04078
- 负责人:
- 金额:$ 3.06万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In recent years, technological and scientific advances in a number of disciplines such as mechatronics, manufacturing, information and signal processing, controls, and artificial intelligence have fuelled a rapid growth in traditional and new applications of robotics. Robotic systems are increasingly used in industrial automation, disaster recovery, search and rescue, hazardous material and waste handling, mining, space and underwater operations, and medicine. Notwithstanding all these advances, robots may not still be able to operate fully autonomously in many complex uncertain task environments, and do often require some form of human supervision/control. This research is concerned with human-in-the-loop robotic systems. These are systems in which human(s) and robot(s) work cooperatively to accomplish a task. The overall goal of the research is to bridge an existing gap between the two fields of autonomous robotics and telerobotics. Traditionally, research in these areas has followed two mostly separate paths. Autonomous robotics systems have mostly comprised of fully autonomous robots. Telerobotics systems, on other hand, have mainly involved system configurations in which one operator fully controls one robotic manipulator. This research pursues a new paradigm in system design and control in which elements of telerobotics and autonomous robotics are combined. In this new paradigm, the operator(s) control aspects of the task that would benefit from human’s unique cognition and decision-making capabilities. Meanwhile, robot(s) assist the operator(s) by autonomously controlling more structured aspects of the task to improve precision and reduce cognitive load.The proposed research will seek a general framework for control and coordination in mixed autonomous robotics/teleorobotics, applicable to a broad class of system configurations. The control strategies will be based on a novel multiple-level control architecture. At one level, optimization-based model-predictive controllers that deal with autonomous aspects of the task will produce commends, which will then be passed to another level of control. This next level controller will combine autonomous and conventional teleoperation control and will resolve any potential conflicts between the two based on user-defined task priorities. Uncertainty in operator(s) future actions and other elements of the task environment will be considered in making optimal control decisions. This will be achieved using particle-based estimation and optimization techniques. It is expected that the real-time computational requirements of the resulting estimation and control algorithms will exceed capabilities of state-of-art desktop computers. Parallel implementation of the algorithms on Graphic Processor Units will be pursued to help achieve the timing requirements using inexpensive, off-the-shelf, graphics cards. The outcomes of this research will help robotics engineers and scientists to design systems that combine benefits of teleoperation and autonomous control. Such systems will be able to operate more effectively in complex unstructured environments, which are common in many robotics applications. The new knowledge arising from this research will find its way into new technologies and products in areas of great importance to Canada such as healthcare, manufacturing and auto industry, mining, and space. Canada is a major player in the field of robotics and Canadian companies in this area will benefit from the new knowledge and also the highly qualified personnel that will participate in the research.
近年来,机电一体化、制造业、信息和信号处理、控制和人工智能等多个学科的技术和科学进步推动了机器人技术在传统和新应用方面的快速增长。机器人系统越来越多地应用于工业自动化、灾难恢复、搜索和救援、危险材料和废物处理、采矿、空间和水下作业以及医药。尽管有了这些进步,机器人可能仍然不能在许多复杂的、不确定的任务环境中完全自主地操作,并且确实经常需要某种形式的人类监督/控制。这项研究关注的是人在环中的机器人系统。这些系统是人类(S)和机器人(S)合作完成一项任务的系统。这项研究的总体目标是弥合自主机器人和远程机器人两个领域之间的现有差距。传统上,这些领域的研究主要沿着两条不同的道路进行。自主机器人系统主要由完全自主的机器人组成。另一方面,远程机器人系统主要涉及一个操作员完全控制一个机器人机械手的系统配置。这项研究在系统设计和控制方面追求一种新的范式,其中结合了远程机器人学和自主机器人学的元素。在这种新的范式中,操作员(S)控制着任务的各个方面,这些方面将受益于人类独特的认知和决策能力。同时,机器人(S)通过自主控制任务的更多结构化方面来帮助操作员(S)提高精度和减少认知负荷。拟议的研究将寻求一种适用于广泛类别的系统配置的混合自主机器人/遥操作机器人的控制和协调的通用框架。控制策略将基于一种新颖的多级控制体系结构。在一个级别上,处理任务的自主方面的基于优化的模型预测控制器将产生建议,然后这些建议将被传递到另一个级别的控制。这一下一级控制器将结合自主和传统的遥操作控制,并将根据用户定义的任务优先级解决两者之间的任何潜在冲突。在做出最优控制决策时,将考虑操作员(S)未来行动的不确定性和任务环境的其他因素。这将使用基于粒子的估计和优化技术来实现。预计由此产生的估计和控制算法的实时计算要求将超过最先进的台式计算机的能力。将寻求在图形处理器单元上并行执行算法,以帮助实现使用廉价的现成图形卡的定时要求。这项研究的结果将帮助机器人工程师和科学家设计结合远程操作和自主控制优点的系统。这样的系统将能够在复杂的非结构化环境中更有效地运行,这种环境在许多机器人应用中很常见。这项研究产生的新知识将进入对加拿大非常重要的领域的新技术和产品,如医疗保健、制造业和汽车工业、采矿和太空。加拿大是机器人领域的主要参与者,这一领域的加拿大公司将受益于新知识以及将参与研究的高素质人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sirouspour, Shahin其他文献
Non-rigid registration of medical images based on estimation of deformation states
- DOI:
10.1088/0031-9155/59/22/6891 - 发表时间:
2014-11-21 - 期刊:
- 影响因子:3.5
- 作者:
Marami, Bahram;Sirouspour, Shahin;Capson, David W. - 通讯作者:
Capson, David W.
A Parallel Computing Platform for Real-Time Haptic Interaction with Deformable Bodies
- DOI:
10.1109/toh.2009.50 - 发表时间:
2010-07-01 - 期刊:
- 影响因子:2.9
- 作者:
Mafi, Ramin;Sirouspour, Shahin;Nicolici, Nicola - 通讯作者:
Nicolici, Nicola
Elastic registration of prostate MR images based on estimation of deformation states
- DOI:
10.1016/j.media.2014.12.007 - 发表时间:
2015-04-01 - 期刊:
- 影响因子:10.9
- 作者:
Marami, Bahram;Sirouspour, Shahin;Fenster, Aaron - 通讯作者:
Fenster, Aaron
Task Performance Evaluation of Asymmetric Semiautonomous Teleoperation of Mobile Twin-Arm Robotic Manipulators
- DOI:
10.1109/toh.2013.23 - 发表时间:
2013-10-01 - 期刊:
- 影响因子:2.9
- 作者:
Malysz, Pawel;Sirouspour, Shahin - 通讯作者:
Sirouspour, Shahin
Nonlinear and Filtered Force/Position Mappings in Bilateral Teleoperation With Application to Enhanced Stiffness Discrimination
- DOI:
10.1109/tro.2009.2017803 - 发表时间:
2009-10-01 - 期刊:
- 影响因子:7.8
- 作者:
Malysz, Pawel;Sirouspour, Shahin - 通讯作者:
Sirouspour, Shahin
Sirouspour, Shahin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sirouspour, Shahin', 18)}}的其他基金
Control and Coordination of Aerial Robots in Emerging Applications
新兴应用中空中机器人的控制和协调
- 批准号:
RGPIN-2020-05705 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Control and Coordination of Aerial Robots in Emerging Applications
新兴应用中空中机器人的控制和协调
- 批准号:
RGPIN-2020-05705 - 财政年份:2021
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Control and Coordination of Aerial Robots in Emerging Applications
新兴应用中空中机器人的控制和协调
- 批准号:
RGPIN-2020-05705 - 财政年份:2020
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Model Predictive Control Strategies for Mixed Telerobotic/Autonomous Robotic Systems
混合远程机器人/自主机器人系统的模型预测控制策略
- 批准号:
RGPIN-2014-04078 - 财政年份:2019
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Model Predictive Control Strategies for Mixed Telerobotic/Autonomous Robotic Systems
混合远程机器人/自主机器人系统的模型预测控制策略
- 批准号:
462029-2014 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Model Predictive Control Strategies for Mixed Telerobotic/Autonomous Robotic Systems
混合远程机器人/自主机器人系统的模型预测控制策略
- 批准号:
RGPIN-2014-04078 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Optimal model predictive control of a commuter train system
通勤列车系统的最优模型预测控制
- 批准号:
469753-2014 - 财政年份:2016
- 资助金额:
$ 3.06万 - 项目类别:
Collaborative Research and Development Grants
Model Predictive Control Strategies for Mixed Telerobotic/Autonomous Robotic Systems
混合远程机器人/自主机器人系统的模型预测控制策略
- 批准号:
462029-2014 - 财政年份:2015
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Model Predictive Control Strategies for Mixed Telerobotic/Autonomous Robotic Systems
混合远程机器人/自主机器人系统的模型预测控制策略
- 批准号:
RGPIN-2014-04078 - 财政年份:2015
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
Optimal model predictive control of a commuter train system
通勤列车系统的最优模型预测控制
- 批准号:
469753-2014 - 财政年份:2015
- 资助金额:
$ 3.06万 - 项目类别:
Collaborative Research and Development Grants
相似海外基金
Formal methods and Koopman-model predictive control
形式化方法和库普曼模型预测控制
- 批准号:
23H01434 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Realization of sparse control with model predictive control and guarantee of its performance
模型预测控制稀疏控制的实现及其性能保证
- 批准号:
23K03916 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CRII: OAC: RUI: Real-Time, Mixed-Integer Model Predictive Control via Learned GPU-Acceleration
CRII:OAC:RUI:通过学习 GPU 加速进行实时混合整数模型预测控制
- 批准号:
2246022 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
Performance Improvement of Massively Parallel Sample-Based Model Predictive Control
大规模并行基于样本的模型预测控制的性能改进
- 批准号:
23K03896 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ECLIPSE: Adaptable Model Predictive Control on a Chip for Personalized and Point-of-Care Plasma Medicine
ECLIPSE:用于个性化和护理点血浆医学的芯片上的自适应模型预测控制
- 批准号:
2317629 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
NEW AND SCALABLE PARADIGMS FOR DATA-DRIVEN MODEL PREDICTIVE CONTROL
数据驱动模型预测控制的新的、可扩展的范式
- 批准号:
2315963 - 财政年份:2023
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
Crystallisation optimisation and control using surrogate modelling and adaptive model predictive control
使用代理建模和自适应模型预测控制进行结晶优化和控制
- 批准号:
2746484 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Studentship
Model predictive control of a mixed battery array for electricity grid storage
电网存储混合电池阵列的模型预测控制
- 批准号:
RGPIN-2019-04286 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual
GOALI: Turnkey Model Predictive Control: automated design, model identification, tuning, and monitoring
GOALI:交钥匙模型预测控制:自动化设计、模型识别、调整和监控
- 批准号:
2138985 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Standard Grant
Towards A Practical Model Predictive Control Framework for Networked and Distributed Dynamic Systems
面向网络和分布式动态系统的实用模型预测控制框架
- 批准号:
RGPIN-2016-05386 - 财政年份:2022
- 资助金额:
$ 3.06万 - 项目类别:
Discovery Grants Program - Individual