Chemometrics Methods for Image-Based Monitoring and Control of Industrial Processes and Product Quality
基于图像的工业过程和产品质量监测和控制的化学计量学方法
基本信息
- 批准号:261188-2013
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The long term goal of this research program consists of developing new chemometrics methods and systems engineering approaches for reducing variability, improving process operation and product quality in industrial areas that are important for the Canadian economy. Process chemometrics means using multivariate latent variable statistical methods for extracting relevant information from large process databases and multivariate images, and using the models for process monitoring, control and optimization. They help maintain international competitiveness, accelerate process development, and make a more efficient use of raw materials and energy. On the short term, the research will concentrate on developing tools for analyzing hyperspectral images of processes and products, and integrating these new sensors in engineering control systems in two areas: 1) production of complex polymer composites, and 2) culture systems for cell therapy development.To improve the performance/cost ratio and environmental signature of their products, the polymer processing industry is striving to replace the use of virgin resins as much as possible by incorporating low costs fillers and recycled resins. The viability of these new but more complex materials rely heavily on the ability to control the dispersion of the components within the finished products. This can hardly be assessed on a real-time basis using conventional destructive and time consuming lab testing. We will develop sensors and systems for real-time monitoring and quality control of these complex polymer composites.Large scale cell culture platforms are used for developing safer and better culture media for growing therapeutic stem cells and screening for molecules to stimulate growth and producing the desired type of cells more specifically. Monitoring growth, cell types and "health" for hundreds to thousands of cell cultures in parallel using the traditional manual approaches is time consuming. Automatic methods for non-intrusive monitoring of live cell cultures using long term large field phase contrast microscopy will be developed for accelerating media and cell therapy research.
该研究计划的长期目标包括开发新的化学计量学方法和系统工程方法,以减少对加拿大经济重要的工业领域的变异性、改进工艺操作和产品质量。过程化学计量学是指利用多元潜变量统计方法从大型过程数据库和多元图像中提取相关信息,并利用模型进行过程监测、控制和优化。它们有助于保持国际竞争力、加速工艺开发并更有效地利用原材料和能源。短期来看,该研究将集中于开发用于分析过程和产品的高光谱图像的工具,并将这些新型传感器集成到两个领域的工程控制系统中:1)复杂聚合物复合材料的生产,2)用于细胞疗法开发的培养系统。为了提高其产品的性能/成本比和环境特征,聚合物加工行业正在努力通过掺入低成本填料和回收材料来尽可能取代原始树脂的使用。 树脂。这些新的但更复杂的材料的可行性在很大程度上取决于控制成品中成分分散的能力。使用传统的破坏性且耗时的实验室测试很难实时评估这一点。我们将开发用于实时监测和质量控制这些复杂聚合物复合材料的传感器和系统。大规模细胞培养平台用于开发更安全、更好的培养基来生长治疗性干细胞,并筛选分子以刺激生长并更具体地产生所需类型的细胞。使用传统的手动方法并行监测数百到数千个细胞培养物的生长、细胞类型和“健康状况”非常耗时。将开发使用长期大视场相差显微镜对活细胞培养物进行非侵入式监测的自动方法,以加速培养基和细胞治疗研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Duchesne, Carl其他文献
A Bootstrap-VIP approach for selecting wavelength intervals in spectral imaging applications
- DOI:
10.1016/j.chemolab.2009.09.005 - 发表时间:
2010-01-15 - 期刊:
- 影响因子:3.9
- 作者:
Gosselin, Ryan;Rodrigue, Denis;Duchesne, Carl - 通讯作者:
Duchesne, Carl
A machine vision approach to on-line estimation of run-of-mine ore composition on conveyor belts
- DOI:
10.1016/j.mineng.2007.04.009 - 发表时间:
2007-10-01 - 期刊:
- 影响因子:4.8
- 作者:
Tessier, Jayson;Duchesne, Carl;Bartolacci, Gianni - 通讯作者:
Bartolacci, Gianni
Mechanical, water absorption, and aging properties of polypropylene/flax/glass fiber hybrid composites
- DOI:
10.1177/0021998314568576 - 发表时间:
2015-12-01 - 期刊:
- 影响因子:2.9
- 作者:
Ghasemzadeh-Barvarz, Massoud;Duchesne, Carl;Rodrigue, Denis - 通讯作者:
Rodrigue, Denis
Selection and Tuning of a Fast and Simple Phase-Contrast Microscopy Image Segmentation Algorithm for Measuring Myoblast Growth Kinetics in an Automated Manner
- DOI:
10.1017/s143192761300161x - 发表时间:
2013-08-01 - 期刊:
- 影响因子:2.8
- 作者:
Juneau, Pierre-Marc;Garnier, Alain;Duchesne, Carl - 通讯作者:
Duchesne, Carl
Single-cell level analysis of megakaryocyte growth and development
- DOI:
10.1016/j.diff.2011.12.003 - 发表时间:
2012-04-01 - 期刊:
- 影响因子:2.9
- 作者:
Leysi-Derilou, Younes;Duchesne, Carl;Pineault, Nicolas - 通讯作者:
Pineault, Nicolas
Duchesne, Carl的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Duchesne, Carl', 18)}}的其他基金
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
- 批准号:
RGPIN-2019-04800 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
- 批准号:
RGPIN-2019-04800 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Development of advanced monitoring and control schemes for the primary aluminum industry
为原铝行业开发先进的监测和控制方案
- 批准号:
557042-2020 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Alliance Grants
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
- 批准号:
RGPAS-2019-00118 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Development of advanced monitoring and control schemes for the primary aluminum industry
为原铝行业开发先进的监测和控制方案
- 批准号:
557042-2020 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Alliance Grants
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
- 批准号:
RGPIN-2019-04800 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
- 批准号:
RGPAS-2019-00118 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
A hyperspectral Raman imaging systems for process analytical technology developments
用于过程分析技术开发的高光谱拉曼成像系统
- 批准号:
RTI-2020-00218 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Research Tools and Instruments
Quality control of baked carbon anodes and assessment of their performance in aluminium reduction cells
铝电解槽中烘烤碳阳极的质量控制及其性能评估
- 批准号:
509004-2017 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Collaborative Research and Development Grants
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
- 批准号:
RGPIN-2019-04800 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of cell-type identification methods based on visible and near-infrared spectral image
基于可见光和近红外光谱图像的细胞类型识别方法的发展
- 批准号:
23H03766 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Realising the potential of retinal image analysis via AI methods for early detection of brain disease in the community
通过人工智能方法实现视网膜图像分析在社区早期检测脑部疾病方面的潜力
- 批准号:
2887450 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Studentship
Extension of computer vision methods to asynchronous image sensors
将计算机视觉方法扩展到异步图像传感器
- 批准号:
23K16902 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Video-Based Fall Detection and Medical Image Denoising Methods
基于视频的跌倒检测和医学图像去噪方法
- 批准号:
2767749 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Studentship
Data driven inversion methods and image reconstruction for nonlinear media
非线性介质的数据驱动反演方法和图像重建
- 批准号:
2308200 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
Deep graphical models and methods for multi-modal biomedical image processing, analysis, and interpretation
用于多模态生物医学图像处理、分析和解释的深度图形模型和方法
- 批准号:
RGPIN-2018-03966 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Feature-based methods for 3D medical image analysis
基于特征的 3D 医学图像分析方法
- 批准号:
RGPIN-2016-04407 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Deep Clustering for Image Data: Methods and Applications
图像数据的深度聚类:方法与应用
- 批准号:
RGPIN-2019-03981 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Methods for ultrasound imaging systems to improve image qualities and to reduce the system cost
超声成像系统提高图像质量并降低系统成本的方法
- 批准号:
RGPIN-2016-04902 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Image analysis and machine learning methods for advanced MRI-neuropathology characterization
用于高级 MRI 神经病理学表征的图像分析和机器学习方法
- 批准号:
RGPIN-2018-03720 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual