Multiscale simulations of plasticity and fracture: the atomic-scale mechanisms of hydrogen embrittlement in engineering alloys.

塑性和断裂的多尺度模拟:工程合金中氢脆的原子尺度机制。

基本信息

  • 批准号:
    RGPIN-2014-03760
  • 负责人:
  • 金额:
    $ 3.21万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Molecular dynamics (MD) and atomistic simulations have the potential to impact areas ranging from nanotechnology, to drug design, to the next generation of advanced materials. However, the predictive capabilities of MD are limited in several ways. The two most significant limitations are the prohibitively small numbers of atoms that can be studied and the limited availability (or sometimes complete lack of availability) of accurate interatomic potentials for many important combinations of atomic species. This research pursues the development of methodologies, algorithms and tools that help to overcome these obstacles. At the same time, we will use these tools to study important scientific questions related to the mechanical failure of materials at the nanoscale. These questions have consequences for the design of materials with enhanced properties, for our understanding of nanostructures, and for the fundamentals of fracture and failure in structural materials.Understanding and predicting fracture is, of course, of fundamental importance to engineering. The more accurate and reliable our understanding of the process, the better equipped we are to confidently design lightweight, long-serving structures that will not fail suddenly and catastrophically. This research focusses on applying atomic scale models to advance our understanding of fundamental aspects of plasticity and fracture in structural engineering metals, specifically addressing the important role that hydrogen plays in making certain important metals more brittle. For example, we will address hydrogen embrittlement effects in aluminum alloys, and the role of hydrides (precipitated hydrogen compounds) in the fracture behaviour of zirconium alloys. The research methodology will use computer simulation techniques that have been developed by the PI's research group and other researchers. For example, we will use multiscale methods that extend the size of the simulation that can be run with atomistic accuracy. This is accomplished through judicious choice of which regions of the problem are treated using a fully atomistic description, allowing us to study hydrogen-aluminum interactions within realistic configurations of atoms around a stressed crack tip. As well, we will employ computational methods to explore atomic configurations and accurately determine the activation energy associated with key processes like dislocation nucleation. Accurate knowledge of such data is of fundamental importance to any larger scale models aiming to predict fracture toughness. Finally, the project will both utilize and build upon the recent openKIM.org project to develop new accurate models to describe the zirconium-hydrogen system. This will allow us to study the complex interactions between cracks and embedded hydrides.
分子动力学(MD)和原子模拟有可能影响从纳米技术到药物设计再到下一代先进材料的各个领域。然而,MD的预测能力在几个方面受到限制。两个最重要的限制是可以研究的原子数量非常少,以及对于许多重要的原子种类组合,精确的原子间势的可用性有限(有时完全缺乏可用性)。这项研究致力于开发有助于克服这些障碍的方法、算法和工具。与此同时,我们将使用这些工具来研究与纳米级材料的机械失效相关的重要科学问题。这些问题对于设计具有增强性能的材料、理解纳米结构以及结构材料断裂和失效的基本原理都有重要意义。当然,理解和预测断裂对工程具有根本的重要性。我们对这一过程的理解越准确、越可靠,我们就越有信心设计出轻质、长期使用的结构,这些结构不会突然发生灾难性的故障。这项研究的重点是应用原子尺度模型,以促进我们对结构工程金属塑性和断裂基本方面的理解,特别是解决氢在使某些重要金属更脆方面所起的重要作用。例如,我们将讨论铝合金中的氢脆效应,以及锆合金断裂行为中沉淀氢化合物的作用。研究方法将使用PI研究小组和其他研究人员开发的计算机模拟技术。例如,我们将使用多尺度方法来扩展可以以原子精度运行的模拟的大小。这是通过明智的选择,该地区的问题进行治疗,使用一个完全原子的描述,使我们能够研究氢铝相互作用的原子周围的应力裂纹尖端的现实配置。此外,我们将采用计算方法来探索原子构型,并准确地确定与位错成核等关键过程相关的活化能。这些数据的准确知识是至关重要的任何更大规模的模型,旨在预测断裂韧性。最后,该项目将利用并建立在最近的openKIM.org项目的基础上,开发新的精确模型来描述锆-氢系统。这将使我们能够研究裂纹和嵌入的裂纹之间复杂的相互作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Miller, Ronald其他文献

Monocular precrash vehicle detection: Features and classifiers
  • DOI:
    10.1109/tip.2006.877062
  • 发表时间:
    2006-07-01
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Sun, Zehang;Bebis, George;Miller, Ronald
  • 通讯作者:
    Miller, Ronald
The Change in the Diffusion of Water in Normal and Degenerative Lumbar Intervertebral Discs Following Joint Mobilization Compared to Prone Lying

Miller, Ronald的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Miller, Ronald', 18)}}的其他基金

From nano-mechanics to materials design: using first principles data to engineer high-performance materials and systems.
从纳米力学到材料设计:使用第一原理数据来设计高性能材料和系统。
  • 批准号:
    RGPIN-2019-06313
  • 财政年份:
    2022
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
From nano-mechanics to materials design: using first principles data to engineer high-performance materials and systems.
从纳米力学到材料设计:使用第一原理数据来设计高性能材料和系统。
  • 批准号:
    RGPIN-2019-06313
  • 财政年份:
    2021
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Condition monitoring of lubricating oils in diesel engines
柴油发动机润滑油的状态监测
  • 批准号:
    515552-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Collaborative Research and Development Grants
From nano-mechanics to materials design: using first principles data to engineer high-performance materials and systems.
从纳米力学到材料设计:使用第一原理数据来设计高性能材料和系统。
  • 批准号:
    RGPIN-2019-06313
  • 财政年份:
    2020
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Condition monitoring of lubricating oils in diesel engines
柴油发动机润滑油的状态监测
  • 批准号:
    515552-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Collaborative Research and Development Grants
From nano-mechanics to materials design: using first principles data to engineer high-performance materials and systems.
从纳米力学到材料设计:使用第一原理数据来设计高性能材料和系统。
  • 批准号:
    RGPIN-2019-06313
  • 财政年份:
    2019
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Multiscale simulations of plasticity and fracture: the atomic-scale mechanisms of hydrogen embrittlement in engineering alloys.
塑性和断裂的多尺度模拟:工程合金中氢脆的原子尺度机制。
  • 批准号:
    RGPIN-2014-03760
  • 财政年份:
    2018
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Condition monitoring of lubricating oils in diesel engines
柴油发动机润滑油的状态监测
  • 批准号:
    515552-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Collaborative Research and Development Grants
Modeling loss of fatigue life in aircraft landing gear due to residual stresses from hard landings
对硬着陆残余应力导致飞机起落架疲劳寿命损失进行建模
  • 批准号:
    530169-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Engage Grants Program
Multiscale simulations of plasticity and fracture: the atomic-scale mechanisms of hydrogen embrittlement in engineering alloys.
塑性和断裂的多尺度模拟:工程合金中氢脆的原子尺度机制。
  • 批准号:
    RGPIN-2014-03760
  • 财政年份:
    2016
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Galaxy Analytical Modeling Evolution (GAME) and cosmological hydrodynamic simulations.
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Largescale numerical investigation on the potential of MTL to produce supershear earthquakes
MTL 产生超剪切地震潜力的大规模数值研究
  • 批准号:
    22H01573
  • 财政年份:
    2022
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of dwell-fatigue behavior in Ti-6Al-4V alloys by AE monitoring and Crystal plasticity simulations
通过 AE 监测和晶体塑性模拟阐明 Ti-6Al-4V 合金的驻留疲劳行为
  • 批准号:
    22K14139
  • 财政年份:
    2022
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Understanding Dislocation Motion and Plasticity via First Principles Simulations Towards Manufacturing of High Ductility Magnesium Alloys
通过高延展性镁合金制造的第一原理模拟了解位错运动和塑性
  • 批准号:
    2032483
  • 财政年份:
    2020
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Standard Grant
Multiscale simulations of plasticity and fracture: the atomic-scale mechanisms of hydrogen embrittlement in engineering alloys.
塑性和断裂的多尺度模拟:工程合金中氢脆的原子尺度机制。
  • 批准号:
    RGPIN-2014-03760
  • 财政年份:
    2018
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Crystal-plasticity modeling of time-dependent deformation behavior of metallic sheets and its application to press forming simulations
金属板随时间变形行为的晶体塑性建模及其在冲压成形模拟中的应用
  • 批准号:
    17H03428
  • 财政年份:
    2017
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Multiscale simulations of plasticity and fracture: the atomic-scale mechanisms of hydrogen embrittlement in engineering alloys.
塑性和断裂的多尺度模拟:工程合金中氢脆的原子尺度机制。
  • 批准号:
    462045-2014
  • 财政年份:
    2016
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Multiscale simulations of plasticity and fracture: the atomic-scale mechanisms of hydrogen embrittlement in engineering alloys.
塑性和断裂的多尺度模拟:工程合金中氢脆的原子尺度机制。
  • 批准号:
    RGPIN-2014-03760
  • 财政年份:
    2016
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Multiscale simulations of plasticity and fracture: the atomic-scale mechanisms of hydrogen embrittlement in engineering alloys.
塑性和断裂的多尺度模拟:工程合金中氢脆的原子尺度机制。
  • 批准号:
    RGPIN-2014-03760
  • 财政年份:
    2015
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Individual
Multiscale simulations of plasticity and fracture: the atomic-scale mechanisms of hydrogen embrittlement in engineering alloys.
塑性和断裂的多尺度模拟:工程合金中氢脆的原子尺度机制。
  • 批准号:
    462045-2014
  • 财政年份:
    2015
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Accurate prediction of work-hardening behavior of metallic sheets using crystal-plasticity analysis and its application to sheet metal forming simulations
使用晶体塑性分析准确预测金属板材的加工硬化行为及其在板材成形模拟中的应用
  • 批准号:
    26289271
  • 财政年份:
    2014
  • 资助金额:
    $ 3.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了