Multiscale simulations of plasticity and fracture: the atomic-scale mechanisms of hydrogen embrittlement in engineering alloys.
塑性和断裂的多尺度模拟:工程合金中氢脆的原子尺度机制。
基本信息
- 批准号:RGPIN-2014-03760
- 负责人:
- 金额:$ 3.21万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Molecular dynamics (MD) and atomistic simulations have the potential to impact areas ranging from nanotechnology, to drug design, to the next generation of advanced materials. However, the predictive capabilities of MD are limited in several ways. The two most significant limitations are the prohibitively small numbers of atoms that can be studied and the limited availability (or sometimes complete lack of availability) of accurate interatomic potentials for many important combinations of atomic species. This research pursues the development of methodologies, algorithms and tools that help to overcome these obstacles. At the same time, we will use these tools to study important scientific questions related to the mechanical failure of materials at the nanoscale. These questions have consequences for the design of materials with enhanced properties, for our understanding of nanostructures, and for the fundamentals of fracture and failure in structural materials.**Understanding and predicting fracture is, of course, of fundamental importance to engineering. The more accurate and reliable our understanding of the process, the better equipped we are to confidently design lightweight, long-serving structures that will not fail suddenly and catastrophically. This research focusses on applying atomic scale models to advance our understanding of fundamental aspects of plasticity and fracture in structural engineering metals, specifically addressing the important role that hydrogen plays in making certain important metals more brittle. For example, we will address hydrogen embrittlement effects in aluminum alloys, and the role of hydrides (precipitated hydrogen compounds) in the fracture behaviour of zirconium alloys. The research methodology will use computer simulation techniques that have been developed by the PI's research group and other researchers. For example, we will use multiscale methods that extend the size of the simulation that can be run with atomistic accuracy. This is accomplished through judicious choice of which regions of the problem are treated using a fully atomistic description, allowing us to study hydrogen-aluminum interactions within realistic configurations of atoms around a stressed crack tip. As well, we will employ computational methods to explore atomic configurations and accurately determine the activation energy associated with key processes like dislocation nucleation. Accurate knowledge of such data is of fundamental importance to any larger scale models aiming to predict fracture toughness. Finally, the project will both utilize and build upon the recent openKIM.org project to develop new accurate models to describe the zirconium-hydrogen system. This will allow us to study the complex interactions between cracks and embedded hydrides.
分子动力学(MD)和原子模拟有可能影响从纳米技术到药物设计再到下一代先进材料的各个领域。然而,MD的预测能力在几个方面都是有限的。两个最大的限制是可以研究的原子数量少得令人望而却步,以及许多重要的原子物种组合的准确原子间势的可获得性有限(有时完全缺乏)。这项研究致力于开发有助于克服这些障碍的方法、算法和工具。同时,我们将利用这些工具在纳米尺度上研究与材料机械失效相关的重要科学问题。这些问题对具有增强性能的材料的设计、我们对纳米结构的理解以及结构材料中断裂和失效的基本原理都有影响。**理解和预测断裂对工程当然是非常重要的。我们对这一过程的了解越准确、越可靠,我们就越有能力自信地设计出不会突然和灾难性地崩溃的轻质、长期使用的结构。这项研究的重点是应用原子尺度模型来促进我们对结构工程金属塑性和断裂基本方面的理解,特别是解决氢在使某些重要金属变得更脆方面所起的重要作用。例如,我们将讨论铝合金中的氢脆效应,以及氢化物(沉淀氢化合物)在锆合金断裂行为中的作用。研究方法将使用由PI的研究小组和其他研究人员开发的计算机模拟技术。例如,我们将使用多尺度方法来扩展能够以原子精度运行的模拟的大小。这是通过明智地选择使用完全原子化的描述来处理问题的哪些区域来实现的,这使得我们能够研究应力裂纹尖端周围原子的真实配置中的氢-铝相互作用。此外,我们还将使用计算方法来探索原子组态,并准确地确定与位错成核等关键过程相关的激活能。这些数据的准确知识对于任何旨在预测断裂韧性的更大规模的模型都是至关重要的。最后,该项目将利用并在最近的OpenKIM.org项目的基础上开发描述锆氢系统的新的准确模型。这将使我们能够研究裂纹和嵌入氢化物之间的复杂相互作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Miller, Ronald其他文献
Monocular precrash vehicle detection: Features and classifiers
- DOI:
10.1109/tip.2006.877062 - 发表时间:
2006-07-01 - 期刊:
- 影响因子:10.6
- 作者:
Sun, Zehang;Bebis, George;Miller, Ronald - 通讯作者:
Miller, Ronald
The Change in the Diffusion of Water in Normal and Degenerative Lumbar Intervertebral Discs Following Joint Mobilization Compared to Prone Lying
- DOI:
10.2519/jospt.2009.2994 - 发表时间:
2009-01-01 - 期刊:
- 影响因子:6.1
- 作者:
Beattie, Paul F.;Donley, Jonathan W.;Miller, Ronald - 通讯作者:
Miller, Ronald
Miller, Ronald的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Miller, Ronald', 18)}}的其他基金
From nano-mechanics to materials design: using first principles data to engineer high-performance materials and systems.
从纳米力学到材料设计:使用第一原理数据来设计高性能材料和系统。
- 批准号:
RGPIN-2019-06313 - 财政年份:2022
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
From nano-mechanics to materials design: using first principles data to engineer high-performance materials and systems.
从纳米力学到材料设计:使用第一原理数据来设计高性能材料和系统。
- 批准号:
RGPIN-2019-06313 - 财政年份:2021
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Condition monitoring of lubricating oils in diesel engines
柴油发动机润滑油的状态监测
- 批准号:
515552-2017 - 财政年份:2020
- 资助金额:
$ 3.21万 - 项目类别:
Collaborative Research and Development Grants
From nano-mechanics to materials design: using first principles data to engineer high-performance materials and systems.
从纳米力学到材料设计:使用第一原理数据来设计高性能材料和系统。
- 批准号:
RGPIN-2019-06313 - 财政年份:2020
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Condition monitoring of lubricating oils in diesel engines
柴油发动机润滑油的状态监测
- 批准号:
515552-2017 - 财政年份:2019
- 资助金额:
$ 3.21万 - 项目类别:
Collaborative Research and Development Grants
From nano-mechanics to materials design: using first principles data to engineer high-performance materials and systems.
从纳米力学到材料设计:使用第一原理数据来设计高性能材料和系统。
- 批准号:
RGPIN-2019-06313 - 财政年份:2019
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Condition monitoring of lubricating oils in diesel engines
柴油发动机润滑油的状态监测
- 批准号:
515552-2017 - 财政年份:2018
- 资助金额:
$ 3.21万 - 项目类别:
Collaborative Research and Development Grants
Modeling loss of fatigue life in aircraft landing gear due to residual stresses from hard landings
对硬着陆残余应力导致飞机起落架疲劳寿命损失进行建模
- 批准号:
530169-2018 - 财政年份:2018
- 资助金额:
$ 3.21万 - 项目类别:
Engage Grants Program
Multiscale simulations of plasticity and fracture: the atomic-scale mechanisms of hydrogen embrittlement in engineering alloys.
塑性和断裂的多尺度模拟:工程合金中氢脆的原子尺度机制。
- 批准号:
RGPIN-2014-03760 - 财政年份:2017
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Multiscale simulations of plasticity and fracture: the atomic-scale mechanisms of hydrogen embrittlement in engineering alloys.
塑性和断裂的多尺度模拟:工程合金中氢脆的原子尺度机制。
- 批准号:
RGPIN-2014-03760 - 财政年份:2016
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Galaxy Analytical Modeling
Evolution (GAME) and cosmological
hydrodynamic simulations.
- 批准号:
- 批准年份:2025
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Largescale numerical investigation on the potential of MTL to produce supershear earthquakes
MTL 产生超剪切地震潜力的大规模数值研究
- 批准号:
22H01573 - 财政年份:2022
- 资助金额:
$ 3.21万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Elucidation of dwell-fatigue behavior in Ti-6Al-4V alloys by AE monitoring and Crystal plasticity simulations
通过 AE 监测和晶体塑性模拟阐明 Ti-6Al-4V 合金的驻留疲劳行为
- 批准号:
22K14139 - 财政年份:2022
- 资助金额:
$ 3.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Understanding Dislocation Motion and Plasticity via First Principles Simulations Towards Manufacturing of High Ductility Magnesium Alloys
通过高延展性镁合金制造的第一原理模拟了解位错运动和塑性
- 批准号:
2032483 - 财政年份:2020
- 资助金额:
$ 3.21万 - 项目类别:
Standard Grant
Multiscale simulations of plasticity and fracture: the atomic-scale mechanisms of hydrogen embrittlement in engineering alloys.
塑性和断裂的多尺度模拟:工程合金中氢脆的原子尺度机制。
- 批准号:
RGPIN-2014-03760 - 财政年份:2017
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Crystal-plasticity modeling of time-dependent deformation behavior of metallic sheets and its application to press forming simulations
金属板随时间变形行为的晶体塑性建模及其在冲压成形模拟中的应用
- 批准号:
17H03428 - 财政年份:2017
- 资助金额:
$ 3.21万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Multiscale simulations of plasticity and fracture: the atomic-scale mechanisms of hydrogen embrittlement in engineering alloys.
塑性和断裂的多尺度模拟:工程合金中氢脆的原子尺度机制。
- 批准号:
462045-2014 - 财政年份:2016
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Multiscale simulations of plasticity and fracture: the atomic-scale mechanisms of hydrogen embrittlement in engineering alloys.
塑性和断裂的多尺度模拟:工程合金中氢脆的原子尺度机制。
- 批准号:
RGPIN-2014-03760 - 财政年份:2016
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Multiscale simulations of plasticity and fracture: the atomic-scale mechanisms of hydrogen embrittlement in engineering alloys.
塑性和断裂的多尺度模拟:工程合金中氢脆的原子尺度机制。
- 批准号:
RGPIN-2014-03760 - 财政年份:2015
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Individual
Multiscale simulations of plasticity and fracture: the atomic-scale mechanisms of hydrogen embrittlement in engineering alloys.
塑性和断裂的多尺度模拟:工程合金中氢脆的原子尺度机制。
- 批准号:
462045-2014 - 财政年份:2015
- 资助金额:
$ 3.21万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Accurate prediction of work-hardening behavior of metallic sheets using crystal-plasticity analysis and its application to sheet metal forming simulations
使用晶体塑性分析准确预测金属板材的加工硬化行为及其在板材成形模拟中的应用
- 批准号:
26289271 - 财政年份:2014
- 资助金额:
$ 3.21万 - 项目类别:
Grant-in-Aid for Scientific Research (B)