Microscale propulsion and pumping in complex fluids

复杂流体中的微尺度推进和泵送

基本信息

  • 批准号:
    RGPIN-2014-06577
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

The development of biomimetic synthetic swimming microorganisms (micro-swimmers), opens the door to a wide spectrum of potential applications where very small scales are required. These micro-swimmers could be used to perform internal surgery or drug delivery in the human body, used as autonomous roving chemical sensors or even for microscale assembly. An anchored micro-swimmer can act as a microscale pump, mimicking cilia found in nature, a very effective method for transport and mixing at the cellular scale. A difficulty in the design of these synthetic micro-swimmers and micro-pumps is that the physics of fluids at such small scales is fundamentally different than that of everyday observable phenomena and often quite unintuitive. At these scales viscous forces are dominant and inertia is negligible hence familiar methods of locomotion and pumping can be completely ineffective. A particular challenge in the design of these micro-devices for use in industrial or biological applications is that the relevant fluids are often non-Newtonian. Despite the innovative experimental strides being made in fabricating these biomimetic devices, scientific progress must be made to properly characterize their mechanics in complex systems and fluids. Developing this understanding is critical if these devices are to progress from simply a proof-of-concept to industrial and commercial viability, and it is vital for applications in healthcare. It is proposed here to develop a research program on the mechanics of synthetic micro-swimmers and micro-pumps in complex fluids and systems, including scenarios where the fluid may contain microstructure, and where the interaction of many swimmers (collective motion) may be crucial.
仿生合成游泳微生物(微型游泳者)的发展为需要非常小规模的广泛潜在应用打开了大门。这些微型游泳者可用于在人体内进行内部手术或药物输送,用作自主流动的化学传感器,甚至用于微型组装。锚定的微型游泳者可以作为一个微型泵,模仿自然界中发现的纤毛,这是一种在细胞尺度上进行运输和混合的非常有效的方法。设计这些合成微型游泳者和微型泵的困难在于,在如此小的尺度下的流体物理学与日常可观察到的现象有着根本的不同,并且通常非常不直观。在这些尺度下,粘性力占主导地位,惯性可以忽略不计,因此熟悉的运动和泵送方法可能完全无效。在工业或生物应用中使用的这些微型装置的设计中的一个特别的挑战是,相关的流体通常是非牛顿的。尽管在制造这些仿生设备方面取得了创新的实验进展,但必须取得科学进展,以正确表征它们在复杂系统和流体中的力学特性。如果这些设备要从简单的概念验证发展到工业和商业可行性,发展这种理解是至关重要的,并且对于医疗保健应用至关重要。这里建议开发一个研究计划,在复杂的流体和系统中的合成微型游泳者和微型泵的力学,包括流体可能包含微观结构的场景,以及许多游泳者(集体运动)的相互作用可能是至关重要的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elfring, Gwynn其他文献

Elfring, Gwynn的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elfring, Gwynn', 18)}}的其他基金

Modelling the dynamics of active matter
模拟活性物质的动力学
  • 批准号:
    RGPIN-2020-04850
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling the dynamics of active matter
模拟活性物质的动力学
  • 批准号:
    DGDND-2020-04850
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Modelling the dynamics of active matter
模拟活性物质的动力学
  • 批准号:
    RGPAS-2020-00121
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Modelling the dynamics of active matter
模拟活性物质的动力学
  • 批准号:
    RGPIN-2020-04850
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling the dynamics of active matter
模拟活性物质的动力学
  • 批准号:
    DGDND-2020-04850
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Modelling the dynamics of active matter
模拟活性物质的动力学
  • 批准号:
    RGPAS-2020-00121
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Modelling the dynamics of active matter
模拟活性物质的动力学
  • 批准号:
    RGPIN-2020-04850
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Modelling the dynamics of active matter
模拟活性物质的动力学
  • 批准号:
    DGDND-2020-04850
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    DND/NSERC Discovery Grant Supplement
Modelling the dynamics of active matter
模拟活性物质的动力学
  • 批准号:
    RGPAS-2020-00121
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Fundamentals of sand control fluid flows
防砂液流动的基础知识
  • 批准号:
    505549-2016
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants

相似国自然基金

微纳卫星用射频离子推进器在轨性能研究
  • 批准号:
    12211530449
  • 批准年份:
    2022
  • 资助金额:
    19.00 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

Distributed Electric Propulsion
分布式电力推进
  • 批准号:
    2777203
  • 财政年份:
    2026
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship
AirWing Maximised Thrust Wind Propulsion Demonstration
AirWing 最大推力风力推进演示
  • 批准号:
    10097743
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative R&D
ERI: Free surface and flexibility effects in partially-submerged bioinspired propulsion
ERI:部分浸没仿生推进中的自由表面和灵活性效应
  • 批准号:
    2347477
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Heat Transfer for Hydrogen-based Propulsion
氢基推进的传热
  • 批准号:
    2902853
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship
ERI: System Tautochronic Pendulum Vibration Absorbers for Next-Generation Propulsion Systems and Other Machinery
ERI:用于下一代推进系统和其他机械的系统等时摆减震器
  • 批准号:
    2347632
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Supercharging Wind Propulsion: Advancing Digital tools in maritime to deliver real world performance in a next generation Wind Propulsion Design
增压风力推进:推进海事领域的数字工具,在下一代风力推进设计中提供真实的性能
  • 批准号:
    10093454
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative R&D
Condition Monitoring of Aircraft Propulsion for Automated Diagnostics
用于自动诊断的飞机推进状态监测
  • 批准号:
    LP220200934
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Linkage Projects
Affordable novel wind tunnel for zero-emission aircraft propulsion testing
用于零排放飞机推进测试的经济实惠的新型风洞
  • 批准号:
    10078383
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    BEIS-Funded Programmes
Project Osprey: Advanced Electric Foiling Propulsion Systems for Sustainable Marine Transport
鱼鹰项目:用于可持续海洋运输的先进电动水翼推进系统
  • 批准号:
    10082505
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative R&D
ENNOBLE - zEro emission raNge exteNder fOr hyBrid propuLsion systEm
ENNOBLE - 用于混合动力推进系统的零排放范围扩展器
  • 批准号:
    10062777
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了