Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches

复杂和简单流体湍流中的能量守恒:机制和新方法

基本信息

  • 批准号:
    RGPIN-2014-04903
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

When flow in a pipe or channel transitions from the laminar state to turbulence, its friction drag increases abruptly: i.e., energy dissipation is much higher in the latter. Turbulence, meanwhile, is ubiquitous in engineering applications; common examples include pipeline oil transferring, district heating/cooling systems, and the propulsion of ships, airplanes and vehicles. Techniques for turbulent drag reduction (DR) can therefore bring about massive benefit both economically (lower cost) and environmentally (less consumption of natural resources and less greenhouse gas emissions). Substantial DR - up to 80% - can be achieved by simply dissolving polymer additives into the fluid. Although polymers are not always permissible in practical applications, understanding of their DR effect will inspire new designs of flow-control techniques for reaching comparable levels of energy saving in simple fluids (without polymers).The most prominent problem in this area is the so-called maximum drag reduction (MDR): a universal asymptotic limit that bounds the level of DR reached by all different polymer solutions. Despite decades of research, MDR has remained the most important unsolved problem in the area of viscoelastic turbulence. Revealing its mechanism is not only of great fundamental interest, a clear picture of the dynamics in polymer solutions near the MDR regime is also pivotal for future developments in DR techniques in general.The proposed program focuses on the numerical computation of DR in turbulence, with a short-term goal set at the mechanism of MDR. The approaches we will take are inspired by a new conceptual framework proposed in our recent studies of simplified model flows. In addition to introducing a distinct perspective to MDR research, the framework also offers consistent explanations for all qualitative observations about MDR, showing great promise of guiding future research. Building on this progress, our plan divides into two directions: one aims at constructing a mechanistic depiction of MDR dynamics; the other focuses on validating our physical understanding in turbulence at realistic scales.Progress along this path will prepare us for our long-term goal: developing next-generation techniques for high levels of DR in simple Newtonian fluids. Polymers are insoluble, prohibited or undesirable in many situations; techniques for DR in simple fluids can thus reach a much broader range of applications. The level of energy saving achieved by existing techniques of such kind is however much lower than that of polymers. With better understanding of polymeric turbulence near MDR, new approaches can be envisioned in which the role of polymers is imitated so that turbulent dynamics can be tethered to MDR in the absence of these additives.Finally, the program is also designed with the training of highly qualified personnel (HQP) in mind. The proposed research breaks down into several projects for multiple students at both the graduate and undergraduate levels. Students working on these projects will build a solid background in fluid dynamics, polymer physics, rheology and applied mathematics. Meanwhile they will also receive systematic training in numerical computation and algorithm development. In addition to the academia, these skills are highly valued in a broad range of industrial sectors, especially the petroleum, chemical and manufacturing industries.
当管道或通道中的流动从层状状态转变为湍流时,其摩擦阻力突然增加:即,后者的能量耗散要高得多。同时,湍流在工程应用中无处不在;常见的例子包括管道油转移,区域供暖/冷却系统以及船舶,飞机和车辆的推进。因此,减少动荡阻力的技术(DR)可以在经济上(成本较低)和环境(较少的自然资源消耗和更少的温室气体排放)带来巨大的好处。通过简单地将聚合物添加剂溶解到流体中,可以实现大量DR-最高80%。尽管在实际应用中并不总是允许聚合物,但对它们的DR效应的理解将激发流动控制技术的新设计,以达到简单流体(无聚合物)的可比节能水平。该区域中最突出的问题是所谓的最大阻力降低(MDR):一种通用的渐近限制,该限制是限制了Drymer drymerer的级别。尽管进行了数十年的研究,但MDR仍然是粘弹性湍流领域中最重要的未解决问题。揭示其机制不仅具有极大的基本兴趣,还清楚地了解了MDR制度附近的聚合物解决方案中的动力学,这对于一般的DR技术的未来发展也至关重要。拟议的计划侧重于湍流中DR的数值计算,并以短期目标设置以MDR的机制设置。我们将采用的方法的灵感来自我们最近对简化模型流的研究中提出的新概念框架。除了对MDR研究介绍独特的观点外,该框架还为所有有关MDR的定性观察提供了一致的解释,这表明了指导未来研究的巨大希望。在这一进步的基础上,我们的计划分为两个方向:一个旨在构建MDR动力学的机械描述;另一个重点是验证我们在现实尺度上的湍流中的身体理解。沿着这条路的发展将为我们的长期目标做好准备:在简单的牛顿流体中为高水平的DR开发下一代技术。在许多情况下,聚合物是不溶性,禁止或不希望的。因此,简单流体中DR的技术可以达到更广泛的应用范围。然而,通过这种现有技术实现的节能水平远低于聚合物。有了更好地了解MDR附近的聚合物湍流,可以设想新的方法模仿聚合物的作用,以便在没有这些添加剂的情况下可以将湍流动力学束缚到MDR。该程序还设计了对高合格人员(HQP)的训练。拟议的研究将研究生和本科生的多个学生分为几个项目。从事这些项目的学生将在流体动力学,聚合物物理学,流变学和应用数学方面建立坚实的背景。同时,他们还将在数值计算和算法开发方面接受系统的培训。除学术界外,这些技能还高于广泛的工业领域,尤其是石油,化学和制造业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xi, Li其他文献

Microscopic void distribution of 3D printed polymer composites with different printing direction
  • DOI:
    10.1016/j.matlet.2023.134236
  • 发表时间:
    2023-03-21
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Liao, Binbin;Yang, Haoming;Xi, Li
  • 通讯作者:
    Xi, Li
Current-induced magnetization switching in Pt/Co/Ta with interfacial decoration by insertion of Cr to enhance perpendicular magnetic anisotropy and spin-orbit torques
Pt/Co/Ta 中的电流感应磁化强度翻转,通过插入 Cr 进行界面装饰,以增强垂直磁各向异性和自旋轨道扭矩
  • DOI:
    10.7567/apex.11.013001
  • 发表时间:
    2018-01-01
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Cui, Baoshan;Chen, Shiwei;Xi, Li
  • 通讯作者:
    Xi, Li
Effect of inserting a non-metal C layer on the spin-orbit torque induced magnetization switching in Pt/Co/Ta structures with perpendicular magnetic anisotropy
插入非金属C层对垂直磁各向异性Pt/Co/Ta结构中自旋轨道扭矩引起的磁化翻转的影响
  • DOI:
    10.1063/1.4979468
  • 发表时间:
    2017-03-27
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Li, Dong;Cui, Baoshan;Xi, Li
  • 通讯作者:
    Xi, Li
A protein kinase C α and β inhibitor blunts hyperphagia to halt renal function decline and reduces adiposity in a rat model of obesity-driven type 2 diabetes.
  • DOI:
    10.1038/s41598-023-43759-7
  • 发表时间:
    2023-10-07
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Wang, Ju;Casimiro-Garcia, Agustin;Johnson, Bryce G.;Duffen, Jennifer;Cain, Michael;Savary, Leigh;Wang, Stephen;Nambiar, Prashant;Lech, Matthew;Zhao, Shanrong;Xi, Li;Zhan, Yutian;Olson, Jennifer;Stejskal, James A.;Lin, Hank;Zhang, Baohong;Martinez, Robert V.;Masek-Hammerman, Katherine;Schlerman, Franklin J.;Dower, Ken
  • 通讯作者:
    Dower, Ken
Electroencephalography-Based Neuroemotional Responses in Cognitively Normal and Cognitively Impaired Elderly by Watching the Ardisia mamillata Hance with Fruits and without Fruits.

Xi, Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xi, Li', 18)}}的其他基金

Numerical simulation and vortex analysis of flow turbulence in viscoelastic fluids
粘弹性流体湍流数值模拟与涡流分析
  • 批准号:
    RGPIN-2022-04720
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Circular economy for vinyl plastics
乙烯基塑料的循环经济
  • 批准号:
    570505-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Antiviral polymers as surface coating materials for curbing the spread of COVID-19
抗病毒聚合物作为表面涂层材料用于遏制 COVID-19 的传播
  • 批准号:
    553988-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Computational molecular engineering for the development of durable and high-perfornamce plasticizers
用于开发耐用高性能增塑剂的计算分子工程
  • 批准号:
    514051-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Computational molecular engineering for the development of durable and high-perfornamce plasticizers
用于开发耐用高性能增塑剂的计算分子工程
  • 批准号:
    514051-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

心肌源性微囊泡AEP调节巨噬细胞极化对放射性心脏损伤的保护机制研究
  • 批准号:
    82373514
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
靶向Wnt/Ca²+参与隧道纳米管介导细胞间线粒体转移研究VD海马神经元保护机制及滋肾活血方的干预作用
  • 批准号:
    82374441
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于油气管网的多模态网络数据的在线监控及其隐私保护
  • 批准号:
    72301108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PSMC2通过RNF170降解IRE1在肝脏缺血再灌注损伤中发挥保护作用
  • 批准号:
    82370646
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
NMP技术结合hBMSCs-exos通过分泌miR-143抑制铁死亡保护DCD心脏的作用和机制研究
  • 批准号:
    82300458
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Energy conservation in turbulent flows of complex and simple fluids: mechanisms and new approaches
复杂和简单流体湍流中的能量守恒:机制和新方法
  • 批准号:
    RGPIN-2014-04903
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了