Experimental studies and control of wall-bounded and separated shear layers using active flow control
使用主动流动控制对壁限和分离剪切层进行实验研究和控制
基本信息
- 批准号:RGPIN-2014-03798
- 负责人:
- 金额:$ 1.97万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2017
- 资助国家:加拿大
- 起止时间:2017-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The impacts of commercial aviation on the environment are serious, widespread and long-lasting. Areas near airports are subject to noise pollution during takeoff and landing. The emissions created by burning jet fuel cause air pollution and, over decades, climate change: commercial aviation produces 4.9% of the total human contribution to global warming according to the IPCC. The International Air Transport Association (IATA) policy is to achieve carbon neutral growth in commercial aviation by 2020, and reduce carbon dioxide emissions by 50% by 2050. Reducing environmental impact is the crucial challenge in the design of future aircraft. In order for the Canadian aerospace industry, which generates $23.6 billion in revenue annually, to remain globally competitive, step changes in technology are required. One such technology is active flow control, which has been identified by the Advisory Council for Aeronautics Research in Europe (ACARE) as a key factor to produce the technologies required to meet the stringent environmental targets set on the aerospace industry.The proposed research is aimed at the development and implementation of novel active flow control strategies with an emphasis on flow fields that are relevant to the Canadian aerospace industry. It will focus on boundary layer transition, as a precursor to controlling turbulent boundary layers, and shear layer separation. The importance of these flows is related to their impact on drag and noise production in a wide range of engineering systems. Notably, the skin friction drag due to a turbulent boundary layer is ten times larger than for the equivalent laminar boundary layer. In the case of separation, the resulting wake and periodic flow structures lead to undesired pressure drag and fluctuating aerodynamic loads. Both turbulent boundary layers and separated shear layers are responsible for increased noise emissions. Therefore, the delay of transition, control of turbulence and management of separated flows can lead to significant reduction in drag and noise emissions.The methodology proposed is to leverage basic flow dynamics and instabilities to develop efficient closed-loop controllers. This aspect is closely linked with the development of sensors and actuators to enable the control systems. These control systems will be implemented and tested in an experimental framework. Therefore, the research is not limited to the study of the fluid flows and their control, but also addresses key practical challenges associated with the application of active flow control in real life. The practical ramifications of this research are wide ranging. They include the reduction of drag, fuel consumption and noise emissions in a variety of commercially relevant fluid systems. These benefits will lead to a reduction in our dependence on fossil fuels and a decrease in greenhouse gas emissions. The proposed work is multidisciplinary, as it draws upon expertise in the areas of fluid dynamics, feedback control and dynamical systems. It is also transformative, since it addresses open questions that, in the long term, should lead to a paradigm shift not only with respect to engineering practices in the management of fluid flows related to energy-conversion devices and transportation, but also to the design practices for energy efficiency of these engineering systems.The proposed research will involve 2 PhD, 3 MASc and 5 undergraduate students. These students will gain skills and expertise that are in high demand in many technological sectors in Canada, in particular the aerospace industry. Canadian companies such as Bombardier Aerospace and Pratt & Whitney Canada will benefit directly from both the proposed research and the highly qualified personnel that it will train.
商业航空对环境的影响是严重的、广泛的和长期的。机场附近地区在起降过程中容易受到噪音污染。燃烧喷气燃料产生的排放会造成空气污染,几十年来还会导致气候变化:根据政府间气候变化专门委员会的数据,商业航空产生的温室气体占人类对全球变暖总贡献的4.9%。国际航空运输协会(IATA)的政策是到2020年实现商业航空的碳中性增长,到2050年减少50%的二氧化碳排放。减少对环境的影响是未来飞机设计中的关键挑战。加拿大航空航天行业每年产生236亿美元的收入,为了保持全球竞争力,需要在技术上进行循序渐进的变革。其中一项技术是主动流量控制,它已被欧洲航空研究咨询委员会(ACARE)确定为生产满足航空航天工业严格环境目标所需技术的关键因素。拟议的研究旨在开发和实施新的主动流量控制策略,重点放在与加拿大航空航天工业相关的流场上。它将侧重于边界层转变,作为控制湍流边界层的前兆,以及剪切层分离。这些流动的重要性与它们在广泛的工程系统中对阻力和噪声产生的影响有关。值得注意的是,湍流边界层引起的表面摩擦阻力是等效层流边界层的十倍。在分离的情况下,由此产生的尾迹和周期性流动结构会导致不需要的压力阻力和脉动的气动载荷。湍流边界层和分离的剪切层都是噪声排放增加的原因。因此,延迟过渡、控制湍流和管理分离流动可以显著减少阻力和噪声排放。所提出的方法是利用基本的流动动力学和不稳定性来开发高效的闭环系统控制器。这方面与传感器和执行器的发展密切相关,以使控制系统成为可能。这些控制系统将在实验框架中实施和测试。因此,这项研究不仅限于对流体流动及其控制的研究,而且还解决了与实际生活中应用主动流动控制相关的关键实际挑战。这项研究的实际结果是广泛的。它们包括减少各种商业相关流体系统的阻力、燃油消耗和噪音排放。这些好处将导致我们减少对化石燃料的依赖,减少温室气体排放。拟议的工作是多学科的,因为它利用了流体动力学、反馈控制和动力系统领域的专业知识。它还具有变革性,因为它解决了一些悬而未决的问题,从长远来看,这些问题不仅应该导致与能源转换装置和运输相关的流体流动管理的工程实践方面的范式转变,而且还应该导致这些工程系统的能效设计实践的转变。这些学生将获得加拿大许多技术部门,特别是航空航天行业非常需要的技能和专业知识。庞巴迪航空航天公司和普惠加拿大公司等加拿大公司将直接受益于拟议的研究和它将培训的高素质人员。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lavoie, Philippe其他文献
Transient growth instability cancelation by a plasma actuator array
- DOI:
10.1007/s00348-010-0877-1 - 发表时间:
2010-12-01 - 期刊:
- 影响因子:2.4
- 作者:
Hanson, Ronald E.;Lavoie, Philippe;Morrison, Jonathan F. - 通讯作者:
Morrison, Jonathan F.
Lavoie, Philippe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lavoie, Philippe', 18)}}的其他基金
Experimental studies and control of wall-bounded and separated shear layers using active flow control
使用主动流动控制对壁限和分离剪切层进行实验研究和控制
- 批准号:
RGPIN-2019-07108 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Experimental studies and control of wall-bounded and separated shear layers using active flow control
使用主动流动控制对壁限和分离剪切层进行实验研究和控制
- 批准号:
RGPIN-2019-07108 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Identification, characterisation and reduction of noise sources from flaps and their components
襟翼及其部件噪声源的识别、表征和减少
- 批准号:
536633-2018 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Collaborative Research and Development Grants
Identification, characterisation and reduction of noise sources from flaps and their components
襟翼及其部件噪声源的识别、表征和减少
- 批准号:
536633-2018 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Collaborative Research and Development Grants
Experimental studies and control of wall-bounded and separated shear layers using active flow control
使用主动流动控制对壁限和分离剪切层进行实验研究和控制
- 批准号:
RGPIN-2019-07108 - 财政年份:2020
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Experimental studies and control of wall-bounded and separated shear layers using active flow control
使用主动流动控制对壁限和分离剪切层进行实验研究和控制
- 批准号:
RGPIN-2019-07108 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Identification, characterisation and reduction of noise sources from flaps and their components
襟翼及其部件噪声源的识别、表征和减少
- 批准号:
536633-2018 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
Collaborative Research and Development Grants
Application de la science des données au sciences comptables
科学竞赛中的科学应用
- 批准号:
541377-2019 - 财政年份:2019
- 资助金额:
$ 1.97万 - 项目类别:
University Undergraduate Student Research Awards
Experimental studies and control of wall-bounded and separated shear layers using active flow control
使用主动流动控制对壁限和分离剪切层进行实验研究和控制
- 批准号:
RGPIN-2014-03798 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Development of dielectric barrier discharge plasma actuators for active flow control and the reduction of noise emission from a landing gear
开发用于主动流量控制和减少起落架噪声排放的介质阻挡放电等离子体执行器
- 批准号:
469616-2014 - 财政年份:2018
- 资助金额:
$ 1.97万 - 项目类别:
Collaborative Research and Development Grants
相似国自然基金
脂滴聚集型小胶质细胞介导的髓鞘病变促进小鼠抑郁样行为及其机制研究
- 批准号:82371528
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
星形胶质细胞介导的髓鞘吞噬参与慢性脑低灌注白质损伤的机制研究
- 批准号:82371307
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Experimental effects of light and content from evening screen media use on children's sleep, executive functioning, and emotion regulation
夜间屏幕媒体使用的光线和内容对儿童睡眠、执行功能和情绪调节的实验影响
- 批准号:
10714309 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Theoretical and Experimental Studies of the Population and Evolutionary Dynamics of Bacteria and Bacteriophage.
细菌和噬菌体的种群和进化动力学的理论和实验研究。
- 批准号:
10813419 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Diversity Supplement for Development of a Miniaturized Wearable Ultrasonic Beam-forming Device for Localized Targeting of Brain Regions in Freely-moving Experimental Subjects
开发微型可穿戴超声波束形成装置的多样性补充,用于对自由移动实验对象的大脑区域进行局部瞄准
- 批准号:
10786355 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Inter-alpha Inhibitors in Experimental Necrotizing Enterocolitis
实验性坏死性小肠结肠炎中的α间抑制剂
- 批准号:
10822492 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Diversity Supplement for Development of a Miniaturized Wearable Ultrasonic Beam-forming Device for Localized Targeting of Brain Regions in Freely-moving Experimental Subjects
开发微型可穿戴超声波束形成装置的多样性补充,用于对自由移动实验对象的大脑区域进行局部瞄准
- 批准号:
10786256 - 财政年份:2023
- 资助金额:
$ 1.97万 - 项目类别:
Development of a Miniaturized Wearable Ultrasonic Beam-forming Device for Localized Targeting of Brain Regions in Freely-moving Experimental Subjects
开发微型可穿戴超声波束形成装置,用于对自由移动实验对象的大脑区域进行局部瞄准
- 批准号:
10693964 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Experimental studies and control of wall-bounded and separated shear layers using active flow control
使用主动流动控制对壁限和分离剪切层进行实验研究和控制
- 批准号:
RGPIN-2019-07108 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Development of a Miniaturized Wearable Ultrasonic Beam-forming Device for Localized Targeting of Brain Regions in Freely-moving Experimental Subjects
开发微型可穿戴超声波束形成装置,用于对自由移动实验对象的大脑区域进行局部瞄准
- 批准号:
10483847 - 财政年份:2022
- 资助金额:
$ 1.97万 - 项目类别:
Experimental studies and control of wall-bounded and separated shear layers using active flow control
使用主动流动控制对壁限和分离剪切层进行实验研究和控制
- 批准号:
RGPIN-2019-07108 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别:
Discovery Grants Program - Individual
Experimental and natural SARS-CoV-2 infection of the human pancreas
人类胰腺的实验性和自然 SARS-CoV-2 感染
- 批准号:
10319841 - 财政年份:2021
- 资助金额:
$ 1.97万 - 项目类别: