Enhancing Lateness Management in Cross-Docking

加强交叉配送的延迟管理

基本信息

  • 批准号:
    507396-2017
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Today's marketplace is moving faster than ever, and companies are challenged to distribute their products morequickly, efficiently and cost-effectively. This has led to the rise of cross docking in the global supply chain tohelp keep pace with customer demand. Cross-docking refers to the practice of unloading goods or materialsfrom an incoming vehicle (e.g., truck, train or vessel container) and then loading them directly onto outboundvehicles with no storage in between.A common form of cross-docking operations corresponds to single or multi-item pallets, which are unloaded,sorted based on their destination, and placed directly onto outbound vehicles. This strategy allowstransportation companies to move towards more proactive, agile and flexible supply chains, with shorterproduct cycles and easier product customization.While the assignment of inbound/outbound vehicles to cross-dock doors has been widely studied, very fewstudies exist on the lateness issues, i.e., (1) late return of containers to vessels when inbound vehicles arecontainers, and (2) late delivery to customers. We propose to investigate these lateness issues throughout theassignment of inbound containers to doors in order to minimize the tardiness penalties due to late containerreturns, and the mitigation of it with the tardiness penalties associated to late or early delivery of goods tocustomers. We will assume that the schedule of the outbound vehicles to be given in the research projectsassociated with the master students supported by the Engage grant, while the postdoctoral fellow (MITACSElevate to be submitted shortly) will assume flexible truck scheduling.We plan to design meta-heuristic algorithms, which will integrate some machine learning tools in order tobenefit from the lessons learned from the past in order to better estimate the travel times. Design and validation
今天的市场比以往任何时候都发展得更快,公司面临的挑战是更迅速、更有效、更经济地分销产品。这导致了全球供应链中交叉对接的兴起,以帮助跟上客户需求的步伐。交叉对接是指从入境车辆上卸下货物或材料的做法(例如,卡车、火车或船舶集装箱),然后将它们直接装载到出站车辆上,其间没有存储。通常形式的交叉对接操作对应于单个或多个物品托盘,这些托盘被卸载,基于它们的目的地被分类,并直接放置到出站车辆上。这一战略使运输公司能够转向更主动、敏捷和灵活的供应链,缩短产品周期,更容易进行产品定制。虽然入站/出站车辆分配到交叉坞门已被广泛研究,但很少有研究存在迟到问题,即,(1)当抵港车辆是货柜时,货柜会延迟交还船只;及(2)延迟交付客户。我们建议调查这些迟到的问题,在整个分配的入境集装箱的门,以尽量减少迟到的罚款,由于迟到containerreturn,并减轻它与迟到或提前交付货物给客户的迟到处罚。我们将假设,出境车辆的时间表将在与参与资助的硕士研究生相关的研究项目中给出,而博士后研究员(MITACSElevate将很快提交)将采用灵活的卡车调度。我们计划设计元启发式算法,它将整合一些机器学习工具,以便从过去的经验教训中受益,以便更好地估计旅行时间。设计和验证

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jaumard, Brigitte其他文献

Energy-Efficient Service Function Chain Provisioning
Optimum ConvergeCast Scheduling in Wireless Sensor Networks
  • DOI:
    10.1109/tcomm.2018.2848271
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
    8.3
  • 作者:
    Bakshi, Mahesh;Jaumard, Brigitte;Narayanan, Lata
  • 通讯作者:
    Narayanan, Lata

Jaumard, Brigitte的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jaumard, Brigitte', 18)}}的其他基金

Large-Scale and Big Data Optimization
大规模、大数据优化
  • 批准号:
    RGPIN-2017-06715
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Large-Scale and Big Data Optimization
大规模、大数据优化
  • 批准号:
    RGPIN-2017-06715
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Large-Scale and Big Data Optimization
大规模、大数据优化
  • 批准号:
    RGPIN-2017-06715
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Large-Scale and Big Data Optimization
大规模、大数据优化
  • 批准号:
    RGPIN-2017-06715
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Large-Scale and Big Data Optimization
大规模、大数据优化
  • 批准号:
    RGPIN-2017-06715
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Large-Scale and Big Data Optimization
大规模、大数据优化
  • 批准号:
    RGPIN-2017-06715
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Large Scale Optimization with Applications in Communication Networks
大规模优化及其在通信网络中的应用
  • 批准号:
    36426-2012
  • 财政年份:
    2016
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Large Scale Optimization with Applications in Communication Networks
大规模优化及其在通信网络中的应用
  • 批准号:
    36426-2012
  • 财政年份:
    2015
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Large Scale Optimization with Applications in Communication Networks
大规模优化及其在通信网络中的应用
  • 批准号:
    36426-2012
  • 财政年份:
    2014
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Large Scale Optimization with Applications in Communication Networks
大规模优化及其在通信网络中的应用
  • 批准号:
    36426-2012
  • 财政年份:
    2013
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了