Large-Scale and Big Data Optimization
大规模、大数据优化
基本信息
- 批准号:RGPIN-2017-06715
- 负责人:
- 金额:$ 2.99万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In today's digital world, with ever increasing amounts of data comes the need to solve optimization problems of unprecedented sizes. Machine learning, communication and social networks, logistics systems are some of the many prominent application domains where optimization problems arise with tens of thousands or millions of variables. Many optimization models and algorithms, while exhibiting great efficiency in modest dimensions, have great difficulties to scale for instances of this size and do not offer satisfactory solution. The primary and long-term objective of my research is to contribute to the design of novel optimization algorithms capable of working in very large-scale setting. I plan to investigate both exact and heuristic methods, and validate the findings on some particular applications in communication, logistics and social networks.For exact methods, the objective is to integrate knowledge based on both theoretical and empirical evidence from several disciplines, and explore the "what, why, how, and do" paradigm with an emphasis on (i) modelling aspects, (ii) combination of mathematical models, and (iii) parallelization techniques in order to take advantage of the heterogeneous environments combining multi-core processors, multi-threaded programming and GPU accelerators for very large scale optimization. While those environment were only available on mainframe computers, they are now available to computers that are easily accessible to the industry. For heuristic methods, focus will be on meta-heuristics, a wide class of solution methods that have been successfully applied to many optimization problems. However, they seem to have reached their limits to solve very large combinatorial problems such as those arising in cross-docking or network optimization. This is because meta-heuristics explore the solution space with ad-hoc methods, whose efficiency and computing time highly depend on the topology of the local optima which, except for some very particular problems, are very difficult to foresee. We plan to replace the ad-hoc exploration of the solution space with an informed exploration guided by machine learning. Comparison will be made with direct machine learning algorithms on practical problems arising in: (i) supply chain management and in particular with cross-docking, and (ii) network optimization and (iii) mechanism design in social networks. Data required by machine learning algorithms will be provided by ClearD and Ciena for the first two applications, and an organization/industrial partner needs to be identified for the third one.The results of my research will provide the industry (like ClearD and Ciena) information technology management tools for efficient and automated cross-docking/network management, not only to improve competitiveness but also to reduce energy consumption and therefore carbon footprint.
在当今的数字世界中,随着数据量的不断增加,需要解决前所未有的优化问题。机器学习、通信和社交网络、物流系统是许多突出的应用领域中的一些,在这些应用领域中,出现了数万或数百万个变量的优化问题。许多优化模型和算法,虽然表现出很大的效率,在适度的维度,有很大的困难,以规模为这种规模的实例,并没有提供令人满意的解决方案。我的研究的主要和长期目标是有助于设计能够在非常大规模的设置工作的新的优化算法。我计划研究精确和启发式方法,并在通信,物流和社交网络中的一些特定应用中验证研究结果。对于精确方法,目标是整合基于多个学科的理论和经验证据的知识,并探索“什么,为什么,如何和做”的范式,重点是(i)建模方面,(ii)数学模型的组合,以及(iii)并行化技术,以便利用结合多核处理器、多线程编程和GPU加速器的异构环境来进行非常大规模的优化。虽然这些环境仅在大型计算机上可用,但它们现在可用于业界易于访问的计算机。对于启发式方法,重点将放在元算法,已成功应用于许多优化问题的解决方法的广泛类别。然而,它们在解决非常大的组合问题(例如交叉对接或网络优化中出现的问题)方面似乎已经达到了极限。这是因为元算法是用自组织方法来探索解空间的,其效率和计算时间高度依赖于局部最优解的拓扑结构,而局部最优解除了一些非常特殊的问题外,是很难预测的。我们计划用机器学习指导下的知情探索来取代对解决方案空间的临时探索。将与直接机器学习算法进行比较,以解决以下实际问题:(i)供应链管理,特别是交叉对接,(ii)网络优化和(iii)社交网络中的机制设计。 机器学习算法所需的数据将由ClearD和Ciena为前两个应用程序提供,第三个应用程序需要确定一个组织/工业合作伙伴。我的研究结果将为行业提供(如ClearD和Ciena)信息技术管理工具,用于高效和自动化的交叉对接/网络管理,不仅要提高竞争力,还要减少能源消耗,从而减少碳足迹。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jaumard, Brigitte其他文献
Energy-Efficient Service Function Chain Provisioning
- DOI:
10.1364/jocn.10.000114 - 发表时间:
2018-03-01 - 期刊:
- 影响因子:5
- 作者:
Huin, Nicolas;Tomassilli, Andrea;Jaumard, Brigitte - 通讯作者:
Jaumard, Brigitte
Optimum ConvergeCast Scheduling in Wireless Sensor Networks
- DOI:
10.1109/tcomm.2018.2848271 - 发表时间:
2018-11-01 - 期刊:
- 影响因子:8.3
- 作者:
Bakshi, Mahesh;Jaumard, Brigitte;Narayanan, Lata - 通讯作者:
Narayanan, Lata
Jaumard, Brigitte的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jaumard, Brigitte', 18)}}的其他基金
Large-Scale and Big Data Optimization
大规模、大数据优化
- 批准号:
RGPIN-2017-06715 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Large-Scale and Big Data Optimization
大规模、大数据优化
- 批准号:
RGPIN-2017-06715 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Large-Scale and Big Data Optimization
大规模、大数据优化
- 批准号:
RGPIN-2017-06715 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Large-Scale and Big Data Optimization
大规模、大数据优化
- 批准号:
RGPIN-2017-06715 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Large-Scale and Big Data Optimization
大规模、大数据优化
- 批准号:
RGPIN-2017-06715 - 财政年份:2017
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Enhancing Lateness Management in Cross-Docking
加强交叉配送的延迟管理
- 批准号:
507396-2017 - 财政年份:2017
- 资助金额:
$ 2.99万 - 项目类别:
Engage Grants Program
Large Scale Optimization with Applications in Communication Networks
大规模优化及其在通信网络中的应用
- 批准号:
36426-2012 - 财政年份:2016
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Large Scale Optimization with Applications in Communication Networks
大规模优化及其在通信网络中的应用
- 批准号:
36426-2012 - 财政年份:2015
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Large Scale Optimization with Applications in Communication Networks
大规模优化及其在通信网络中的应用
- 批准号:
36426-2012 - 财政年份:2014
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Large Scale Optimization with Applications in Communication Networks
大规模优化及其在通信网络中的应用
- 批准号:
36426-2012 - 财政年份:2013
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
基于热量传递的传统固态发酵过程缩小(Scale-down)机理及调控
- 批准号:22108101
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于Multi-Scale模型的轴流血泵瞬变流及空化机理研究
- 批准号:31600794
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
针对Scale-Free网络的紧凑路由研究
- 批准号:60673168
- 批准年份:2006
- 资助金额:25.0 万元
- 项目类别:面上项目
相似海外基金
Development of new diagnostic and therapeutic methods for MCT8 deficiency and large-scale analysis in a big city
开发针对 MCT8 缺陷的新诊断和治疗方法以及大城市的大规模分析
- 批准号:
21K07783 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Large-Scale and Big Data Optimization
大规模、大数据优化
- 批准号:
RGPIN-2017-06715 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Ultra-High-Resolution Visualization of 3D Scanned Big Data for Assisting Recognition of Large-Scale 3D Structures in the Real World
3D扫描大数据超高分辨率可视化,辅助识别现实世界中的大型3D结构
- 批准号:
21H04903 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Collaborative Research: Controlling the Microstructure for Improved Mechanical Properties of Large-scale Polymer Composite Structures Made by Big Area Additive Manufacturing
合作研究:控制微观结构以改善大面积增材制造制成的大型聚合物复合结构的机械性能
- 批准号:
2055529 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
Collaborative Research: Controlling the Microstructure for Improved Mechanical Properties of Large-scale Polymer Composite Structures Made by Big Area Additive Manufacturing
合作研究:控制微观结构以改善大面积增材制造制成的大型聚合物复合结构的机械性能
- 批准号:
2055628 - 财政年份:2021
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
Large-Scale and Big Data Optimization
大规模、大数据优化
- 批准号:
RGPIN-2017-06715 - 财政年份:2020
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
Large-Scale and Big Data Optimization
大规模、大数据优化
- 批准号:
RGPIN-2017-06715 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Discovery Grants Program - Individual
BIGDATA: IA: Enabling Large-Scale, Privacy-Preserving Genomic Computing with a Hardware-Assisted Secure Big-Data Analytics Framework
BIGDATA:IA:利用硬件辅助的安全大数据分析框架实现大规模、隐私保护的基因组计算
- 批准号:
1838083 - 财政年份:2019
- 资助金额:
$ 2.99万 - 项目类别:
Standard Grant
"Large-scale modelling of transport and energy choices using emerging big data sources"
“使用新兴大数据源对运输和能源选择进行大规模建模”
- 批准号:
2114183 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Studentship
CAREER: Harness the Big Data via Large-Scale Lifelong Learning
职业:通过大规模终身学习利用大数据
- 批准号:
1749940 - 财政年份:2018
- 资助金额:
$ 2.99万 - 项目类别:
Continuing Grant














{{item.name}}会员




