Optimizing Video Quality Using Machine-Learning-Controlled Adaptive Resolution, Video Compression

使用机器学习控制的自适应分辨率、视频压缩来优化视频质量

基本信息

  • 批准号:
    510255-2017
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Digital video requires a huge volume of data and must be compressed before it can be stored and/ortransmitted. TV broadcasters, video game manufacturers, video content distributors use video compression intheir products and/or services. AMD designs and manufactures graphics cards and microprocessors for tablets,gaming consoles, embedded devices and cloud servers. These products must yield the best possible videoquality. In video compression, there is an inherent trade-off between bitrate and video quality. Obtaining thebest video quality for a given bitrate is, therefore, a crucial task. The bitrate of a video sequence can be reducedby reducing its resolution prior to encoding or by using a larger quantization parameter during encoding. Whichof these two options yields less quality loss depends on the video content as well as the available networkbandwidth. The goal of this research project is to design a machine learning algorithm to make a run-timedecision of whether to encode a video picture (or group of pictures) at the original high resolution, or to reduceresolution, encode the lower resolution version with a smaller quantization step, decode and upsample atreceiver side with expectation to achieve the best quality for a given bit rate. By utilizing the optimalresolution/quantization step combination, our developed adaptive video resolution adjustment scheme canresult in significant bitrate savings for a target quality or significant quality improvements for a target bitrate.
数字视频需要巨大的数据量,并且必须在存储和/或传输之前进行压缩。电视广播公司、视频游戏制造商、视频内容发行商在其产品和/或服务中使用视频压缩。AMD为平板电脑、游戏机、嵌入式设备和云服务器设计和制造显卡和微处理器。这些产品必须提供尽可能最好的视频质量。在视频压缩中,比特率和视频质量之间存在内在的权衡。因此,获得给定比特率的最佳视频质量是一项至关重要的任务。可以通过在编码前降低视频序列的分辨率或在编码期间使用更大的量化参数来降低视频序列的比特率。这两个选项中哪一个质量损失较小取决于视频内容和可用的网络带宽。本研究项目的目标是设计一种机器学习算法,以便在运行时决定是以原始的高分辨率对视频图像(或图像组)进行编码,还是降低分辨率,以较小的量化步长对较低分辨率的版本进行编码,并在接收端进行解码和上采样,以期在给定的比特率下获得最好的质量。通过利用最佳分辨率/量化步长的组合,我们开发的自适应视频分辨率调整方案可以显著节省目标质量的比特率或显著提高目标比特率的质量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shirani, Shahram其他文献

Block-Based CS in a CMOS Image Sensor
  • DOI:
    10.1109/jsen.2012.2219143
  • 发表时间:
    2014-08-01
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Dadkhah, Mohammadreza;Deen, M. Jamal;Shirani, Shahram
  • 通讯作者:
    Shirani, Shahram
Neural network solution fora real-time no-reference video quality assessment of H.264/AVC video bitstreams
  • DOI:
    10.1007/s11042-021-10654-0
  • 发表时间:
    2021-10-27
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Fazliani, Yasamin;Andrade, Ernesto;Shirani, Shahram
  • 通讯作者:
    Shirani, Shahram
Affine motion prediction based on translational motion vectors
Automatic Monocular System for Human Fall Detection Based on Variations in Silhouette Area
  • DOI:
    10.1109/tbme.2012.2228262
  • 发表时间:
    2013-02-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Mirmahboub, Behzad;Samavi, Shadrokh;Shirani, Shahram
  • 通讯作者:
    Shirani, Shahram
An approach to improve the signal-to-noise ratio of active pixel sensor for low-light-level applications
  • DOI:
    10.1109/ted.2006.881053
  • 发表时间:
    2006-09-01
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Faramarzpour, Naser;Deen, M. Jamal;Shirani, Shahram
  • 通讯作者:
    Shirani, Shahram

Shirani, Shahram的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shirani, Shahram', 18)}}的其他基金

Enabling technologies of the video systems of future
未来视频系统的支持技术
  • 批准号:
    RGPIN-2020-06842
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Enabling technologies of the video systems of future
未来视频系统的支持技术
  • 批准号:
    RGPIN-2020-06842
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Contactless Vital Signs Measurement and Analysis Systems
非接触式生命体征测量和分析系统
  • 批准号:
    543650-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Enabling technologies of the video systems of future
未来视频系统的支持技术
  • 批准号:
    RGPIN-2020-06842
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Contactless Vital Signs Measurement and Analysis Systems
非接触式生命体征测量和分析系统
  • 批准号:
    543650-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Multi-Modality-Enriched Video: Potential, Strategies and Applications
多模态丰富视频:潜力、策略和应用
  • 批准号:
    RGPIN-2015-06637
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-Modality-Enriched Video: Potential, Strategies and Applications
多模态丰富视频:潜力、策略和应用
  • 批准号:
    RGPIN-2015-06637
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Audio-track classification using deep neural networks
使用深度神经网络进行音轨分类
  • 批准号:
    530283-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program
Multi-Modality-Enriched Video: Potential, Strategies and Applications
多模态丰富视频:潜力、策略和应用
  • 批准号:
    RGPIN-2015-06637
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-Modality-Enriched Video: Potential, Strategies and Applications
多模态丰富视频:潜力、策略和应用
  • 批准号:
    RGPIN-2015-06637
  • 财政年份:
    2016
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

I-Corps: Centralized, Cloud-Based, Artificial Intelligence (AI) Video Analysis for Enhanced Intubation Documentation and Continuous Quality Control
I-Corps:基于云的集中式人工智能 (AI) 视频分析,用于增强插管记录和持续质量控制
  • 批准号:
    2405662
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
High Quality-of-Experience Real-time Video for Smart Online Shopping
智能在线购物的高质量体验实时视频
  • 批准号:
    LP230100294
  • 财政年份:
    2024
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Linkage Projects
Strong Families Start at Home/Familias Fuertes Comienzan en Casa: A novel Video and Motivational Interviewing Intervention to improve diet quality of low-income, ethnically diverse children
强大的家庭从家庭开始/Familias Fuertes Comienzan en Casa:新颖的视频和动机访谈干预措施,旨在改善低收入、种族多样化儿童的饮食质量
  • 批准号:
    10585437
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
PFI-TT: Automatic Diagnosis of Video Quality Problems in Networked Camera Systems
PFI-TT:网络摄像机系统中视频质量问题的自动诊断
  • 批准号:
    2234596
  • 财政年份:
    2023
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Perceptual and Computational Task-Based Quality Assessment of Driving Video
基于感知和计算任务的驾驶视频质量评估
  • 批准号:
    22K12085
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Improving physical function and quality of life in older adults with prediabetes utilizing interactive small-group resistance training through video conference technology
通过视频会议技术利用交互式小组阻力训练,改善患有前驱糖尿病的老年人的身体功能和生活质量
  • 批准号:
    10384566
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
Feasibility Study/Design for Build Back Better: Use of portable highest quality 3D facial scan product to scan faces for video games and provide immersive and connected experience with realistic avatars
更好地重建的可行性研究/设计:使用便携式最高质量 3D 面部扫描产品扫描视频游戏中的面部,并通过逼真的头像提供身临其境的互联体验
  • 批准号:
    10020552
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Feasibility Studies
SBIR Phase I: Low latency and ultra high quality video streaming platform for highly immersive virtual reality (VR) experiences
SBIR 第一阶段:低延迟和超高质量视频流平台,提供高度沉浸式虚拟现实 (VR) 体验
  • 批准号:
    2151286
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
End-to-End Perceptual Quality-Of-Experience Measurement and Optimization to Reshape Modern Video Communication Systems
端到端感知体验质量测量和优化重塑现代视频通信系统
  • 批准号:
    RGPIN-2018-04712
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced 3D Video Processing Technologies: Super-Resolution, Chroma-Keying, Depth-Map Generation, and Quality Evaluation
先进的 3D 视频处理技术:超分辨率、色度键控、深度图生成和质量评估
  • 批准号:
    RGPIN-2019-06163
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了