Deep Unsupervised Learning for Network Anomaly Detection

用于网络异常检测的深度无监督学习

基本信息

  • 批准号:
    514078-2017
  • 负责人:
  • 金额:
    $ 1.82万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Engage Grants Program
  • 财政年份:
    2017
  • 资助国家:
    加拿大
  • 起止时间:
    2017-01-01 至 2018-12-31
  • 项目状态:
    已结题

项目摘要

Network intrusion detection is a complex and evolving challenge with the increasing size and complexity of modern computernetworks and the vast quantity of data they generate. Processing this vast amount of information in today's networks is beyondhuman capabilities and necessitates automated filtering mechanisms that identify potential intrusions for human operatorinvestigation. To address this issue, Rank, Inc. will partner with the University of Toronto to develop novel anomaly detectionsystems - filtering mechanism that ingest normal activity in the network and then monitor for suspicious threats over time. Thesenovel methods are based on machine learning principles that will not only provide improved detection rate, but also supply humanoperators with explanations for identified anomalies in order to assist their decision-making process.Rank, Inc. develops solutions for monitoring network traffic to detect possible network intrusions. The proposed project seeks toimprove the toolkit developed by Rank, Inc. by advancing their anomaly detection suite with advanced concepts of deep learning.The proposed innovations are crucial for Rank, Inc. as they compete with other solution providers in the cybersecurity space andwill enable a development of a unique solution which will benefit the company from direct sales.
随着现代计算机网络的规模和复杂性的不断增加以及所产生的大量数据,网络入侵检测是一项复杂而不断发展的挑战。在当今的网络中处理如此大量的信息超出了人类的能力,需要自动过滤机制来识别潜在的入侵,以便人类操作员进行调查。为了解决这个问题,Rank公司将与多伦多大学合作开发新的异常检测系统——过滤机制,吸收网络中的正常活动,然后随着时间的推移监测可疑威胁。这些新颖的方法基于机器学习原理,不仅可以提高检测率,还可以为人工操作员提供识别异常的解释,以协助他们的决策过程。Rank, Inc.开发监控网络流量的解决方案,以检测可能的网络入侵。拟议的项目旨在通过使用先进的深度学习概念推进其异常检测套件来改进Rank, Inc.开发的工具包。拟议的创新对于Rank公司来说至关重要,因为他们在网络安全领域与其他解决方案提供商竞争,并将开发一种独特的解决方案,这将使公司从直销中受益。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sanner, Scott其他文献

Evaluation of Machine Learning Algorithms for Predicting Readmission After Acute Myocardial Infarction Using Routinely Collected Clinical Data
  • DOI:
    10.1016/j.cjca.2019.10.023
  • 发表时间:
    2020-06-01
  • 期刊:
  • 影响因子:
    6.2
  • 作者:
    Gupta, Shagun;Ko, Dennis T.;Sanner, Scott
  • 通讯作者:
    Sanner, Scott
Online continual learning in image classification: An empirical survey
  • DOI:
    10.1016/j.neucom.2021.10.021
  • 发表时间:
    2021-11-05
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Mai, Zheda;Li, Ruiwen;Sanner, Scott
  • 通讯作者:
    Sanner, Scott
Relevance- and interface-driven clustering for visual information retrieval
  • DOI:
    10.1016/j.is.2020.101592
  • 发表时间:
    2020-12-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Bouadjenek, Mohamed Reda;Sanner, Scott;Du, Yihao
  • 通讯作者:
    Du, Yihao
A longitudinal study of topic classification on Twitter.
Twitter上的主题分类的纵向研究。
  • DOI:
    10.7717/peerj-cs.991
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Bouadjenek, Mohamed Reda;Sanner, Scott;Iman, Zahra;Xie, Lexing;Shi, Daniel Xiaoliang
  • 通讯作者:
    Shi, Daniel Xiaoliang
Comparison of machine learning models for occupancy prediction in residential buildings using connected thermostat data
  • DOI:
    10.1016/j.buildenv.2019.106177
  • 发表时间:
    2019-08-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Huchuk, Brent;Sanner, Scott;O'Brien, William
  • 通讯作者:
    O'Brien, William

Sanner, Scott的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sanner, Scott', 18)}}的其他基金

Unifying Recent Advances in Deep Learning with Decision-theoretic Planning for Learned MDPs and POMDPs
将深度学习的最新进展与学习 MDP 和 POMDP 的决策理论规划相结合
  • 批准号:
    RGPIN-2022-04377
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Continuous Decision Diagrams for Machine Learning and Decision-theoretic AI Planning
用于机器学习和决策理论人工智能规划的连续决策图
  • 批准号:
    RGPIN-2016-05705
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Continuous Decision Diagrams for Machine Learning and Decision-theoretic AI Planning
用于机器学习和决策理论人工智能规划的连续决策图
  • 批准号:
    RGPIN-2016-05705
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Machine learning for residential building HVAC analytics platform
用于住宅建筑 HVAC 分析平台的机器学习
  • 批准号:
    508857-2017
  • 财政年份:
    2020
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Continuous Decision Diagrams for Machine Learning and Decision-theoretic AI Planning
用于机器学习和决策理论人工智能规划的连续决策图
  • 批准号:
    RGPIN-2016-05705
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Machine learning for residential building HVAC analytics platform
用于住宅建筑 HVAC 分析平台的机器学习
  • 批准号:
    508857-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Continuous Decision Diagrams for Machine Learning and Decision-theoretic AI Planning
用于机器学习和决策理论人工智能规划的连续决策图
  • 批准号:
    RGPIN-2016-05705
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Machine Learning, Sentiment, and Social Media Analysis for Financial Analytics
用于财务分析的机器学习、情绪和社交媒体分析
  • 批准号:
    531275-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Engage Grants Program
Machine learning for residential building HVAC analytics platform
用于住宅建筑 HVAC 分析平台的机器学习
  • 批准号:
    508857-2017
  • 财政年份:
    2018
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants
Machine learning for residential building HVAC analytics platform
用于住宅建筑 HVAC 分析平台的机器学习
  • 批准号:
    508857-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Collaborative Research and Development Grants

相似海外基金

Unsupervised Deep Learning Framework for Solving One Class Classification Problems
用于解决一类分类问题的无监督深度学习框架
  • 批准号:
    RGPIN-2020-06172
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Unsupervised Deep Learning-Based Detection and Clustering for Biodiversity Analysis using Underwater Imagery
使用水下图像进行生物多样性分析的基于无监督深度学习的检测和聚类
  • 批准号:
    575766-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Unsupervised structure induction from deep learning models of language
来自语言深度学习模型的无监督结构归纳
  • 批准号:
    573629-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: CIF: Medium: Taming Deep Unsupervised Representation Learning in Imaging: Theory and Algorithms
合作研究:CIF:媒介:驯服成像中的深度无监督表示学习:理论和算法
  • 批准号:
    2212065
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
Study on direct PET image reconstruction using an unsupervised deep learning
基于无监督深度学习的直接 PET 图像重建研究
  • 批准号:
    22K07762
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Unsupervised deep learning for ultrasound beamforming and beyond
用于超声波束形成及其他领域的无监督深度学习
  • 批准号:
    578544-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Alliance Grants
Deep unsupervised machine learning approaches for galaxy evolution studies
用于星系演化研究的深度无监督机器学习方法
  • 批准号:
    RGPIN-2022-05148
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: CIF: Medium: Taming Deep Unsupervised Representation Learning in Imaging: Theory and Algorithms
合作研究:CIF:媒介:驯服成像中的深度无监督表示学习:理论和算法
  • 批准号:
    2212066
  • 财政年份:
    2022
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Continuing Grant
III: Small: DeepRep: Unsupervised Deep Representation Learning for Scientific Data Analysis and Visualization
III:小:DeepRep:用于科学数据分析和可视化的无监督深度表示学习
  • 批准号:
    2101696
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Standard Grant
Associative Learning using a Deep neural network based on unsupervised representation
使用基于无监督表示的深度神经网络进行联想学习
  • 批准号:
    2578604
  • 财政年份:
    2021
  • 资助金额:
    $ 1.82万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了