Machine learning for residential building HVAC analytics platform
用于住宅建筑 HVAC 分析平台的机器学习
基本信息
- 批准号:508857-2017
- 负责人:
- 金额:$ 1.55万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Residential building space conditions makes up 64% of the energy consumption of the average Canadian home. The optimization and improvement of these systems has progressed little in comparison to the buildings in commercial applications and the ever more connected home. As such there is a substantial opportunity to improve these systems in their operation and present homeowners opportunity to save both energy and money. The current project will use the relatively new, and untouched, data that has became more mainstream with advent of the connected thermostat. Now, for the first time really, long term operation, interaction and performance data can be collected at the individual home level. This data will allow for more advanced models, controls, monitoring and recommendations to be made for an individual home. To proceed with the proposed project, two leading researchers with complementary skills and experiences with collaborate with Canada-based ecobee inc. for a five-year term. The industry partner is a market leader in the residential connected thermostat space. They have the capacity and interest to learn from and potentially integrate the research results and develop them into marketable products and provide their customers increased value. Ecobee inc has committed to contributing significant resources to the project, including: technical advice/support, engineering services, hardware, computational assistance, and monetary funding. Data collected from operational units in the field across the ecobee population along with high quality modelling with provide the testbed for designed controls and machine learning products. The outcome of the research is systems able to learn from its environment (both system and occupants) and provide improved controls, recommendations on inefficiencies and diagnose anomalies in the performance. Each of these will increase the energy efficiency and potentially comfort of the occupants. Aside from helping Canada achieve its objectives in greenhouse gas emissions and reducing the need for additional energy infrastructure, the developed building controls will help the industry partner remain competitive within Canada and abroad.
住宅建筑空间条件占加拿大家庭平均能源消耗的64%。这些系统的优化和改进与商业应用中的建筑物和日益互联的家庭相比进展甚微。因此,有很大的机会来改善这些系统的运行,并为房主提供节省能源和金钱的机会。目前的项目将使用相对较新的、未被触及的数据,随着联网恒温器的出现,这些数据已经成为主流。现在,第一次真正的,长期的操作,互动和性能数据可以收集在个人家庭层面。这些数据将允许为单个家庭提供更先进的模型,控制,监控和建议。 为了继续进行拟议中的项目,两名具有互补技能和经验的领先研究人员与加拿大的ecobee公司合作。任期五年该行业合作伙伴是住宅连接恒温器领域的市场领导者。他们有能力和兴趣学习和整合研究成果,并将其开发成可销售的产品,为客户提供更高的价值。Ecobee公司承诺为该项目提供大量资源,包括:技术咨询/支持、工程服务、硬件、计算协助和资金。从生态蜜蜂种群的现场操作单元收集的数据沿着高质量的建模为设计的控制和机器学习产品提供了测试平台。研究的结果是系统能够从其环境(系统和占用者)中学习,并提供改进的控制,对效率低下的建议和诊断性能异常。这些都将提高能源效率和潜在的舒适度的居住者。除了帮助加拿大实现其温室气体排放目标和减少对额外能源基础设施的需求外,开发的建筑控制将有助于行业合作伙伴在加拿大和国外保持竞争力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sanner, Scott其他文献
Evaluation of Machine Learning Algorithms for Predicting Readmission After Acute Myocardial Infarction Using Routinely Collected Clinical Data
- DOI:
10.1016/j.cjca.2019.10.023 - 发表时间:
2020-06-01 - 期刊:
- 影响因子:6.2
- 作者:
Gupta, Shagun;Ko, Dennis T.;Sanner, Scott - 通讯作者:
Sanner, Scott
Online continual learning in image classification: An empirical survey
- DOI:
10.1016/j.neucom.2021.10.021 - 发表时间:
2021-11-05 - 期刊:
- 影响因子:6
- 作者:
Mai, Zheda;Li, Ruiwen;Sanner, Scott - 通讯作者:
Sanner, Scott
Relevance- and interface-driven clustering for visual information retrieval
- DOI:
10.1016/j.is.2020.101592 - 发表时间:
2020-12-01 - 期刊:
- 影响因子:3.7
- 作者:
Bouadjenek, Mohamed Reda;Sanner, Scott;Du, Yihao - 通讯作者:
Du, Yihao
A longitudinal study of topic classification on Twitter.
Twitter上的主题分类的纵向研究。
- DOI:
10.7717/peerj-cs.991 - 发表时间:
2022 - 期刊:
- 影响因子:3.8
- 作者:
Bouadjenek, Mohamed Reda;Sanner, Scott;Iman, Zahra;Xie, Lexing;Shi, Daniel Xiaoliang - 通讯作者:
Shi, Daniel Xiaoliang
Comparison of machine learning models for occupancy prediction in residential buildings using connected thermostat data
- DOI:
10.1016/j.buildenv.2019.106177 - 发表时间:
2019-08-01 - 期刊:
- 影响因子:7.4
- 作者:
Huchuk, Brent;Sanner, Scott;O'Brien, William - 通讯作者:
O'Brien, William
Sanner, Scott的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sanner, Scott', 18)}}的其他基金
Unifying Recent Advances in Deep Learning with Decision-theoretic Planning for Learned MDPs and POMDPs
将深度学习的最新进展与学习 MDP 和 POMDP 的决策理论规划相结合
- 批准号:
RGPIN-2022-04377 - 财政年份:2022
- 资助金额:
$ 1.55万 - 项目类别:
Discovery Grants Program - Individual
Continuous Decision Diagrams for Machine Learning and Decision-theoretic AI Planning
用于机器学习和决策理论人工智能规划的连续决策图
- 批准号:
RGPIN-2016-05705 - 财政年份:2021
- 资助金额:
$ 1.55万 - 项目类别:
Discovery Grants Program - Individual
Continuous Decision Diagrams for Machine Learning and Decision-theoretic AI Planning
用于机器学习和决策理论人工智能规划的连续决策图
- 批准号:
RGPIN-2016-05705 - 财政年份:2020
- 资助金额:
$ 1.55万 - 项目类别:
Discovery Grants Program - Individual
Machine learning for residential building HVAC analytics platform
用于住宅建筑 HVAC 分析平台的机器学习
- 批准号:
508857-2017 - 财政年份:2020
- 资助金额:
$ 1.55万 - 项目类别:
Collaborative Research and Development Grants
Continuous Decision Diagrams for Machine Learning and Decision-theoretic AI Planning
用于机器学习和决策理论人工智能规划的连续决策图
- 批准号:
RGPIN-2016-05705 - 财政年份:2019
- 资助金额:
$ 1.55万 - 项目类别:
Discovery Grants Program - Individual
Continuous Decision Diagrams for Machine Learning and Decision-theoretic AI Planning
用于机器学习和决策理论人工智能规划的连续决策图
- 批准号:
RGPIN-2016-05705 - 财政年份:2018
- 资助金额:
$ 1.55万 - 项目类别:
Discovery Grants Program - Individual
Machine Learning, Sentiment, and Social Media Analysis for Financial Analytics
用于财务分析的机器学习、情绪和社交媒体分析
- 批准号:
531275-2018 - 财政年份:2018
- 资助金额:
$ 1.55万 - 项目类别:
Engage Grants Program
Machine learning for residential building HVAC analytics platform
用于住宅建筑 HVAC 分析平台的机器学习
- 批准号:
508857-2017 - 财政年份:2018
- 资助金额:
$ 1.55万 - 项目类别:
Collaborative Research and Development Grants
Machine learning for residential building HVAC analytics platform
用于住宅建筑 HVAC 分析平台的机器学习
- 批准号:
508857-2017 - 财政年份:2017
- 资助金额:
$ 1.55万 - 项目类别:
Collaborative Research and Development Grants
Deep Unsupervised Learning for Network Anomaly Detection
用于网络异常检测的深度无监督学习
- 批准号:
514078-2017 - 财政年份:2017
- 资助金额:
$ 1.55万 - 项目类别:
Engage Grants Program
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Understanding structural evolution of galaxies with machine learning
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
煤矿安全人机混合群智感知任务的约束动态多目标Q-learning进化分配
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于领弹失效考量的智能弹药编队短时在线Q-learning协同控制机理
- 批准号:62003314
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成上下文张量分解的e-learning资源推荐方法研究
- 批准号:61902016
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
儿童音乐能力发展对语言与社会认知能力及脑发育的影响
- 批准号:31971003
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
具有时序迁移能力的Spiking-Transfer learning (脉冲-迁移学习)方法研究
- 批准号:61806040
- 批准年份:2018
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于Deep-learning的三江源区冰川监测动态识别技术研究
- 批准号:51769027
- 批准年份:2017
- 资助金额:38.0 万元
- 项目类别:地区科学基金项目
多场景网络学习中基于行为-情感-主题联合建模的学习者兴趣挖掘关键技术研究
- 批准号:61702207
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于异构医学影像数据的深度挖掘技术及中枢神经系统重大疾病的精准预测
- 批准号:61672236
- 批准年份:2016
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Examining the Relationship between Residential History at Midlife and Prostate Cancer Outcomes
检查中年居住史与前列腺癌结果之间的关系
- 批准号:
10584259 - 财政年份:2023
- 资助金额:
$ 1.55万 - 项目类别:
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 1.55万 - 项目类别:
Preconception and Prenatal Health Impacting Factors and Child Health
孕前和产前健康影响因素和儿童健康
- 批准号:
10746579 - 财政年份:2023
- 资助金额:
$ 1.55万 - 项目类别:
The role of adverse community-level policing exposure on disparities in Alzheimer's disease related dementias and deleterious multidimensional aging
社区层面的不良警务暴露对阿尔茨海默病相关痴呆和有害的多维衰老差异的作用
- 批准号:
10642517 - 财政年份:2023
- 资助金额:
$ 1.55万 - 项目类别:
Identifying disparities in air pollution-attributable cardiovascular health outcomes within a quasi-experimental framework
在准实验框架内确定空气污染导致的心血管健康结果的差异
- 批准号:
10722399 - 财政年份:2023
- 资助金额:
$ 1.55万 - 项目类别:
Risk and protective factors for Black youth suicide and suicidal ideation and behaviors
黑人青少年自杀以及自杀意念和行为的风险和保护因素
- 批准号:
10664624 - 财政年份:2023
- 资助金额:
$ 1.55万 - 项目类别:
Impacts of structural racism on racial and ethnic disparities in perinatal health
结构性种族主义对围产期健康种族和民族差异的影响
- 批准号:
10637373 - 财政年份:2023
- 资助金额:
$ 1.55万 - 项目类别:
Visualizing and predicting new and late HIV diagnosis in South Carolina: A Big Data approach
可视化和预测南卡罗来纳州新的和晚期的艾滋病毒诊断:大数据方法
- 批准号:
10815140 - 财政年份:2023
- 资助金额:
$ 1.55万 - 项目类别:
Opioid Use Disorder and Residential Treatment in Medicaid
阿片类药物使用障碍和医疗补助中的住院治疗
- 批准号:
10738178 - 财政年份:2023
- 资助金额:
$ 1.55万 - 项目类别:
Examining impacts of structural racism and discrimination on Hispanic treatment differences and oral health disparities; known internally as "Smiles of Hope - Proyecto Hispanico de Esperanza" (SoPHE)
审查结构性种族主义和歧视对西班牙裔待遇差异和口腔健康差异的影响;
- 批准号:
10909478 - 财政年份:2023
- 资助金额:
$ 1.55万 - 项目类别: