Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
基本信息
- 批准号:RGPIN-2015-03762
- 负责人:
- 金额:$ 0.8万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Operator Algebras is an area of Mathematics that grew out of the efforts of mathematicians-pioneered by John ***von Neumann-to create mathematics that fit what physicists were doing in Quantum Mechanics. Indeed, as it has ***happened and continues to happen, physicists found themselves using objects that in some sense were ***mathematical-and that fit their intuition on how their models were working-but did not make sense from the point ***of view of the accepted mathematics of the time. The mathematical area created by von Neumann did not directly ***fulfill the goal of becoming the language of Quantum Mechanics, but it became a mathematical world on its own. ***Over the last 60 years, Operator Algebras have provided insight into areas as diverse as quantum field theory, ***knot theory, logic, quantum information and quantum computing, among others. ******The algebras considered by operator algebraists are naturally infinite-dimensional, and so they are not very ***amenable to our intuition. This has led researchers to, besides developing some intuition, create a myriad of ***tricks and points of view to understand parts of these immense objects. One of these points of view is that of ***enveloping structures. Sometimes it is possible to say something about an object by considering it inside a ***bigger, more tractable object. For C*-algebras, some of these enveloping structures include the double dual, the ***multiplier algebra, and the injective envelope. My research program investigates these last two objects. For ***Operator Systems, the most natural enveloping object is the C*-envelope, defined by Arveson in 1972, and this ***object is also part of my research program.***Operator systems are subspaces of operators that contain the identity and the adjoints of all its operators. ***They are the natural objects on which to study completely positive maps. Even in small dimensions, operators systems ***are not well-understood, and a classification up to complete order isomorphism is lacking. My program aims to ***fill this gap, by working towards and effective classification of finite-dimensional operator systems are their ***C*-envelopes. ****Another branch of my research program consists of the study of majorization and the Schur-Horn theorem. This***theorem is a very well understood result about matrices, such that its generalizations to an infinite-dimensional ***setting are non-trivial. In slight technical terms, the Schur-Horn theorem characterizes the possible diagonals of ***a self-adjoint matrix under different choices of an orthonormal basis. Still in finite-dimension, a generalization ***of this theorem to normal operators is a question no one knows the answer to! My research on commuting families of ***selfadjoint operators provides a context where this may be studied successfully. Majorization appears naturally in ***Quantum Information, and my program also investigates this connection, in particular with the so-called trumping majorization.**
算子代数是数学的一个领域,它是由约翰·冯·诺依曼(John von Neumann)开创的数学家努力创造的,以适应物理学家在量子力学中所做的数学。事实上,当它已经发生并继续发生时,物理学家发现他们使用的对象在某种意义上是抽象的,并且符合他们对模型如何工作的直觉,但从当时公认的数学观点来看是没有意义的。冯·诺依曼创造的数学领域并没有直接实现成为量子力学语言的目标,但它自己成为了一个数学世界。* 在过去的60年里,算子代数提供了深入了解量子场论,* 结理论,逻辑,量子信息和量子计算等领域。* 算子代数学家考虑的代数自然是无限维的,因此它们不太符合我们的直觉。这使得研究人员除了发展一些直觉之外,还创造了无数的技巧和观点来理解这些巨大物体的一部分。这些观点之一是关于 * 包络结构的观点。有时候,我们可以通过把一个物体放在一个更大、更易处理的物体中来说明它。对于C*-代数,这些包络结构包括双重对偶、* 乘子代数和内射包络。我的研究计划调查了最后两个物体。对于 * 算子系统,最自然的包络对象是Arveson在1972年定义的C*-包络,这个 * 对象也是我研究计划的一部分。算子系统是包含所有算子的恒等式和伴随的算子的子空间。* 它们是研究完全正映射的自然对象。即使在小的维度上,算子系统 * 也没有得到很好的理解,并且缺乏完全序同构的分类。我的计划旨在填补这一空白,通过努力和有效的分类有限维算子系统是他们的 *C*-信封。* 我的研究计划的另一个分支包括优控制和舒尔-霍恩定理的研究。这个 *** 定理是关于矩阵的一个非常好理解的结果,因此它对无限维 *** 设置的推广是非平凡的。在轻微的技术术语中,舒尔-霍恩定理描述了 * 自伴矩阵在不同的正交基选择下可能的对角线。仍然在有限维中,这个定理推广到正规算子是一个没有人知道答案的问题!我的研究交换家庭的 * 自伴运营商提供了一个背景下,这可能是研究成功。多数化在量子信息中很自然地出现,我的程序也研究了这种联系,特别是所谓的王牌多数化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Argerami, Martin其他文献
Argerami, Martin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Argerami, Martin', 18)}}的其他基金
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
- 批准号:
RGPIN-2015-03762 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
- 批准号:
RGPIN-2015-03762 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
- 批准号:
RGPIN-2015-03762 - 财政年份:2016
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
- 批准号:
RGPIN-2015-03762 - 财政年份:2015
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Majorization in von Neumann algebras, and local multipliers of C* algebras
主修冯·诺依曼代数和 C* 代数的局部乘子
- 批准号:
283294-2009 - 财政年份:2013
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Majorization in von Neumann algebras, and local multipliers of C* algebras
主修冯·诺依曼代数和 C* 代数的局部乘子
- 批准号:
283294-2009 - 财政年份:2012
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Majorization in von Neumann algebras, and local multipliers of C* algebras
主修冯·诺依曼代数和 C* 代数的局部乘子
- 批准号:
283294-2009 - 财政年份:2011
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Majorization in von Neumann algebras, and local multipliers of C* algebras
主修冯·诺依曼代数和 C* 代数的局部乘子
- 批准号:
283294-2009 - 财政年份:2010
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Majorization in von Neumann algebras, and local multipliers of C* algebras
主修冯·诺依曼代数和 C* 代数的局部乘子
- 批准号:
283294-2009 - 财政年份:2009
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Majorization, operator inequalities and differential geometry in operator algebras
算子代数中的大化、算子不等式和微分几何
- 批准号:
283294-2004 - 财政年份:2008
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
New horizons in operator algebras: finite-dimensional approximations and quantized function theory
算子代数的新视野:有限维近似和量化函数理论
- 批准号:
RGPIN-2022-03600 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Residually finite-dimensional operator algebras: peaking phenomena and finite-dimensional approximations
剩余有限维算子代数:峰值现象和有限维近似
- 批准号:
570214-2022 - 财政年份:2022
- 资助金额:
$ 0.8万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The C* - Envelope of Residually Finite-Dimensional Operator Algebras
C* - 剩余有限维算子代数的包络
- 批准号:
556558-2020 - 财政年份:2020
- 资助金额:
$ 0.8万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Holistic Analysis and Control of High-Dimensional Dynamical Systems via Operator-Theoretic and Data-Driven Approaches
通过算子理论和数据驱动方法对高维动力系统进行整体分析和控制
- 批准号:
1933976 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Standard Grant
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
- 批准号:
RGPIN-2015-03762 - 财政年份:2019
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
- 批准号:
RGPIN-2015-03762 - 财政年份:2017
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Operator algebraic approach to infinite-dimensional objects and descriptive set theory
无限维对象的算子代数方法和描述集论
- 批准号:
16K17608 - 财政年份:2016
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
- 批准号:
RGPIN-2015-03762 - 财政年份:2016
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
- 批准号:
RGPIN-2015-03762 - 财政年份:2015
- 资助金额:
$ 0.8万 - 项目类别:
Discovery Grants Program - Individual
Optimal estimation for inverse of infinite-dimensional operator by self-validating numerical computations and its applications
无限维算子逆的自验证数值计算最优估计及其应用
- 批准号:
24340018 - 财政年份:2012
- 资助金额:
$ 0.8万 - 项目类别:
Grant-in-Aid for Scientific Research (B)