Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization

有限维算子系统、完全正映射和主要化

基本信息

  • 批准号:
    RGPIN-2015-03762
  • 负责人:
  • 金额:
    $ 0.8万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Operator Algebras is an area of Mathematics that grew out of the efforts of mathematicians-pioneered by John ***von Neumann-to create mathematics that fit what physicists were doing in Quantum Mechanics. Indeed, as it has ***happened and continues to happen, physicists found themselves using objects that in some sense were ***mathematical-and that fit their intuition on how their models were working-but did not make sense from the point ***of view of the accepted mathematics of the time. The mathematical area created by von Neumann did not directly ***fulfill the goal of becoming the language of Quantum Mechanics, but it became a mathematical world on its own. ***Over the last 60 years, Operator Algebras have provided insight into areas as diverse as quantum field theory, ***knot theory, logic, quantum information and quantum computing, among others. ******The algebras considered by operator algebraists are naturally infinite-dimensional, and so they are not very ***amenable to our intuition. This has led researchers to, besides developing some intuition, create a myriad of ***tricks and points of view to understand parts of these immense objects. One of these points of view is that of ***enveloping structures. Sometimes it is possible to say something about an object by considering it inside a ***bigger, more tractable object. For C*-algebras, some of these enveloping structures include the double dual, the ***multiplier algebra, and the injective envelope. My research program investigates these last two objects. For ***Operator Systems, the most natural enveloping object is the C*-envelope, defined by Arveson in 1972, and this ***object is also part of my research program.***Operator systems are subspaces of operators that contain the identity and the adjoints of all its operators. ***They are the natural objects on which to study completely positive maps. Even in small dimensions, operators systems ***are not well-understood, and a classification up to complete order isomorphism is lacking. My program aims to ***fill this gap, by working towards and effective classification of finite-dimensional operator systems are their ***C*-envelopes. ****Another branch of my research program consists of the study of majorization and the Schur-Horn theorem. This***theorem is a very well understood result about matrices, such that its generalizations to an infinite-dimensional ***setting are non-trivial. In slight technical terms, the Schur-Horn theorem characterizes the possible diagonals of ***a self-adjoint matrix under different choices of an orthonormal basis. Still in finite-dimension, a generalization ***of this theorem to normal operators is a question no one knows the answer to! My research on commuting families of ***selfadjoint operators provides a context where this may be studied successfully. Majorization appears naturally in ***Quantum Information, and my program also investigates this connection, in particular with the so-called trumping majorization.**
算子代数是数学的一个领域,它是由约翰·冯·诺依曼(John von Neumann)开创的数学家努力创造的,以适应物理学家在量子力学中所做的数学。事实上,当它已经发生并继续发生时,物理学家发现他们使用的对象在某种意义上是抽象的,并且符合他们对模型如何工作的直觉,但从当时公认的数学观点来看是没有意义的。冯·诺依曼创造的数学领域并没有直接实现成为量子力学语言的目标,但它自己成为了一个数学世界。* 在过去的60年里,算子代数提供了深入了解量子场论,* 结理论,逻辑,量子信息和量子计算等领域。* 算子代数学家考虑的代数自然是无限维的,因此它们不太符合我们的直觉。这使得研究人员除了发展一些直觉之外,还创造了无数的技巧和观点来理解这些巨大物体的一部分。这些观点之一是关于 * 包络结构的观点。有时候,我们可以通过把一个物体放在一个更大、更易处理的物体中来说明它。对于C*-代数,这些包络结构包括双重对偶、* 乘子代数和内射包络。我的研究计划调查了最后两个物体。对于 * 算子系统,最自然的包络对象是Arveson在1972年定义的C*-包络,这个 * 对象也是我研究计划的一部分。算子系统是包含所有算子的恒等式和伴随的算子的子空间。* 它们是研究完全正映射的自然对象。即使在小的维度上,算子系统 * 也没有得到很好的理解,并且缺乏完全序同构的分类。我的计划旨在填补这一空白,通过努力和有效的分类有限维算子系统是他们的 *C*-信封。* 我的研究计划的另一个分支包括优控制和舒尔-霍恩定理的研究。这个 *** 定理是关于矩阵的一个非常好理解的结果,因此它对无限维 *** 设置的推广是非平凡的。在轻微的技术术语中,舒尔-霍恩定理描述了 * 自伴矩阵在不同的正交基选择下可能的对角线。仍然在有限维中,这个定理推广到正规算子是一个没有人知道答案的问题!我的研究交换家庭的 * 自伴运营商提供了一个背景下,这可能是研究成功。多数化在量子信息中很自然地出现,我的程序也研究了这种联系,特别是所谓的王牌多数化。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Argerami, Martin其他文献

Argerami, Martin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Argerami, Martin', 18)}}的其他基金

Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
  • 批准号:
    RGPIN-2015-03762
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
  • 批准号:
    RGPIN-2015-03762
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
  • 批准号:
    RGPIN-2015-03762
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
  • 批准号:
    RGPIN-2015-03762
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Majorization in von Neumann algebras, and local multipliers of C* algebras
主修冯·诺依曼代数和 C* 代数的局部乘子
  • 批准号:
    283294-2009
  • 财政年份:
    2013
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Majorization in von Neumann algebras, and local multipliers of C* algebras
主修冯·诺依曼代数和 C* 代数的局部乘子
  • 批准号:
    283294-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Majorization in von Neumann algebras, and local multipliers of C* algebras
主修冯·诺依曼代数和 C* 代数的局部乘子
  • 批准号:
    283294-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Majorization in von Neumann algebras, and local multipliers of C* algebras
主修冯·诺依曼代数和 C* 代数的局部乘子
  • 批准号:
    283294-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Majorization in von Neumann algebras, and local multipliers of C* algebras
主修冯·诺依曼代数和 C* 代数的局部乘子
  • 批准号:
    283294-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Majorization, operator inequalities and differential geometry in operator algebras
算子代数中的大化、算子不等式和微分几何
  • 批准号:
    283294-2004
  • 财政年份:
    2008
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    合作创新研究团队

相似海外基金

New horizons in operator algebras: finite-dimensional approximations and quantized function theory
算子代数的新视野:有限维近似和量化函数理论
  • 批准号:
    RGPIN-2022-03600
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Residually finite-dimensional operator algebras: peaking phenomena and finite-dimensional approximations
剩余有限维算子代数:峰值现象和有限维近似
  • 批准号:
    570214-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
The C* - Envelope of Residually Finite-Dimensional Operator Algebras
C* - 剩余有限维算子代数的包络
  • 批准号:
    556558-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Holistic Analysis and Control of High-Dimensional Dynamical Systems via Operator-Theoretic and Data-Driven Approaches
通过算子理论和数据驱动方法对高维动力系统进行整体分析和控制
  • 批准号:
    1933976
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Standard Grant
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
  • 批准号:
    RGPIN-2015-03762
  • 财政年份:
    2019
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
  • 批准号:
    RGPIN-2015-03762
  • 财政年份:
    2017
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebraic approach to infinite-dimensional objects and descriptive set theory
无限维对象的算子代数方法和描述集论
  • 批准号:
    16K17608
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
  • 批准号:
    RGPIN-2015-03762
  • 财政年份:
    2016
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Finite Dimensional Operator Systems, Completely Positive Maps, and Majorization
有限维算子系统、完全正映射和主要化
  • 批准号:
    RGPIN-2015-03762
  • 财政年份:
    2015
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Discovery Grants Program - Individual
Optimal estimation for inverse of infinite-dimensional operator by self-validating numerical computations and its applications
无限维算子逆的自验证数值计算最优估计及其应用
  • 批准号:
    24340018
  • 财政年份:
    2012
  • 资助金额:
    $ 0.8万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了