Test case prioritization
测试用例优先级
基本信息
- 批准号:499518-2016
- 负责人:
- 金额:$ 3.79万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Collaborative Research and Development Grants
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal is a collaborative effort between IBM CAS Canada and the Data Science Laboratory at Ryerson University to build a software tool-aided test case prioritization model. Software analytics guide practitioners in decision making throughout the software development process. In this context, prediction models can help managers efficiently organize their resources and identify problems by analyzing patterns on existing project data in an intelligent and meaningful manner. It is necessary to have all-in-one tools that manage data collection, analysis, and calibration as well as communicate with existing systems in software organizations to provide valuable information. Over the years we have developed such a tool, called Dione. Dione is a software delivery intelligence and predictive analytics tool for a software delivery platform. It has an intelligent decision optimization engine (mining, filtering, prediction). It integrates data extraction, reporting, and prediction modules for a complete decision support cycle and offers a minimum configuration solution in a platform agnostic manner. In this project we aim to deploy Dione to IBM Rational Team Concert (RTC) to address practical challenges regarding Test Case prioritization. Test case prioritization techniques schedule test cases for execution in an order that attempts to increase their effectiveness in meeting some performance goal. Various goals are possible; one involves rate of fault detection - a measure of how quickly faults are detected within the testing process. An improved rate of fault detection during testing can provide faster feedback on the system under test, and let software engineers begin correcting faults earlier than might otherwise be possible. In the case of successful application of the proposed solution, it will not only impact the product quality of RTC but also be a best practice for the users of it. In other words, this will trigger cascaded benefits for a particular software industry in Canada.
该提案是IBM CAS Canada和瑞尔森大学数据科学实验室之间的合作成果,旨在构建软件工具辅助的测试用例优先级排序模型。软件分析指导从业者在整个软件开发过程中进行决策。在这种情况下,预测模型可以帮助管理人员有效地组织他们的资源,并通过以智能和有意义的方式分析现有项目数据的模式来识别问题。有必要拥有多功能一体化工具来管理数据收集、分析和校准,并与软件组织中的现有系统进行通信,以提供有价值的信息。多年来,我们开发了这样一种工具,称为Dione。Dione是一个软件交付智能和预测分析工具,用于软件交付平台。它具有智能决策优化引擎(挖掘,过滤,预测)。它集成了数据提取、报告和预测模块,以实现完整的决策支持周期,并以平台无关的方式提供最低配置解决方案。在这个项目中,我们的目标是将Dione部署到IBM Rational Team Concert(RTC)中,以解决关于测试用例优先级的实际挑战。测试用例优先级排序技术将测试用例按照一定的顺序安排执行,以试图提高它们在满足某些性能目标方面的有效性。各种目标都是可能的;一个涉及到故障检测率-在测试过程中检测到故障的速度。在测试过程中,提高故障检测的速度可以为被测系统提供更快的反馈,并让软件工程师开始纠正故障,这比其他方法可能做到的要早。在成功应用所提出的解决方案的情况下,它不仅会影响RTC的产品质量,而且也是RTC用户的最佳实践。换句话说,这将为加拿大的特定软件行业带来级联效益。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bener, Ayse其他文献
Predictive Modeling of Implantation Outcome in an In Vitro Fertilization Setting: An Application of Machine Learning Methods
- DOI:
10.1177/0272989x14535984 - 发表时间:
2015-08-01 - 期刊:
- 影响因子:3.6
- 作者:
Uyar, Asli;Bener, Ayse;Ciray, H. Nadir - 通讯作者:
Ciray, H. Nadir
Bener, Ayse的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bener, Ayse', 18)}}的其他基金
Towards Measuring Defect Debt and Developing a Recommender System for Their Prioritization
衡量缺陷债务并开发优先级推荐系统
- 批准号:
RGPIN-2017-05312 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Towards Measuring Defect Debt and Developing a Recommender System for Their Prioritization
衡量缺陷债务并开发优先级推荐系统
- 批准号:
RGPIN-2017-05312 - 财政年份:2021
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Detecting similarities and conflicts in software requirements
检测软件需求中的相似性和冲突
- 批准号:
543936-2019 - 财政年份:2021
- 资助金额:
$ 3.79万 - 项目类别:
Collaborative Research and Development Grants
Towards Measuring Defect Debt and Developing a Recommender System for Their Prioritization
衡量缺陷债务并开发优先级推荐系统
- 批准号:
RGPIN-2017-05312 - 财政年份:2020
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Detecting similarities and conflicts in software requirements
检测软件需求中的相似性和冲突
- 批准号:
543936-2019 - 财政年份:2020
- 资助金额:
$ 3.79万 - 项目类别:
Collaborative Research and Development Grants
Towards Measuring Defect Debt and Developing a Recommender System for Their Prioritization
衡量缺陷债务并开发优先级推荐系统
- 批准号:
RGPIN-2017-05312 - 财政年份:2019
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
Detecting similarities and conflicts in software requirements
检测软件需求中的相似性和冲突
- 批准号:
543936-2019 - 财政年份:2019
- 资助金额:
$ 3.79万 - 项目类别:
Collaborative Research and Development Grants
Generating narratives from financial data using active learning
使用主动学习从财务数据中生成叙述
- 批准号:
531066-2018 - 财政年份:2018
- 资助金额:
$ 3.79万 - 项目类别:
Engage Grants Program
Recommender system empowered by contextual information
由上下文信息支持的推荐系统
- 批准号:
490782-2015 - 财政年份:2018
- 资助金额:
$ 3.79万 - 项目类别:
Collaborative Research and Development Grants
Towards Measuring Defect Debt and Developing a Recommender System for Their Prioritization
衡量缺陷债务并开发优先级推荐系统
- 批准号:
RGPIN-2017-05312 - 财政年份:2018
- 资助金额:
$ 3.79万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
一类特殊Abelian群的子群计数问题
- 批准号:12301006
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
联合CRISPR技术以及iPSC技术区别研究AMD高危序列ARMS2以及HTRA1基因型致病机理
- 批准号:81670875
- 批准年份:2016
- 资助金额:58.0 万元
- 项目类别:面上项目
Case-Cohort数据的半参数逆回归估计和纵向数据分析
- 批准号:11071137
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:面上项目
相似海外基金
Test case prioritization using machine learning for large-scale continuous integration environment
使用机器学习对大规模持续集成环境进行测试用例优先级排序
- 批准号:
576129-2022 - 财政年份:2022
- 资助金额:
$ 3.79万 - 项目类别:
Alliance Grants
Computational Prioritization of Coding and Non-Coding Variants in Congenital Heart Disease
先天性心脏病编码和非编码变体的计算优先级
- 批准号:
10469306 - 财政年份:2021
- 资助金额:
$ 3.79万 - 项目类别:
Establishing a platform to monitor the performance of public health systems across Canada
建立一个平台来监测加拿大各地公共卫生系统的绩效
- 批准号:
417483 - 财政年份:2020
- 资助金额:
$ 3.79万 - 项目类别:
Operating Grants
Test case prioritization
测试用例优先级
- 批准号:
499518-2016 - 财政年份:2017
- 资助金额:
$ 3.79万 - 项目类别:
Collaborative Research and Development Grants
Test case prioritization
测试用例优先级
- 批准号:
499518-2016 - 财政年份:2016
- 资助金额:
$ 3.79万 - 项目类别:
Collaborative Research and Development Grants
Clinical prioritization of reported disease variants in asymptomatic individuals
无症状个体中报告的疾病变异的临床优先顺序
- 批准号:
8692560 - 财政年份:2013
- 资助金额:
$ 3.79万 - 项目类别:
VAAST+: Tool for variant prioritization, risk assessment and disease-gene finding
VAAST:用于变异优先级排序、风险评估和疾病基因发现的工具
- 批准号:
8721455 - 财政年份:2013
- 资助金额:
$ 3.79万 - 项目类别:
Clinical prioritization of reported disease variants in asymptomatic individuals
无症状个体中报告的疾病变异的临床优先顺序
- 批准号:
9113670 - 财政年份:2013
- 资助金额:
$ 3.79万 - 项目类别:
VAAST+: Tool for variant prioritization, risk assessment and disease-gene finding
VAAST:用于变异优先级排序、风险评估和疾病基因发现的工具
- 批准号:
8919919 - 财政年份:2013
- 资助金额:
$ 3.79万 - 项目类别:
VAAST+: Tool for variant prioritization, risk assessment and disease-gene finding
VAAST:用于变异优先级排序、风险评估和疾病基因发现的工具
- 批准号:
9551714 - 财政年份:2013
- 资助金额:
$ 3.79万 - 项目类别: