Quality-Control of Next-Generation Sequencing Data
下一代测序数据的质量控制
基本信息
- 批准号:RGPIN-2016-05541
- 负责人:
- 金额:$ 3.93万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Next-generation DNA sequencing (NGS) allows the entire genome of an organism to be sequenced quickly (within days) and affordably (less than $10,000). Continued technological advances are reducing both time and cost, and soon this approach will become viable for routine commercial applications. NGS has allowed researchers to understand evolutionary history, improve and optimize agricultural practices and better understand fundamental properties of the cell. In the future, creative entrepreneurs will develop clever new commercial applications that leverage cost-effective NGS.******But today each individual sample requires hands-on analysis. Future production use of NGS will require automated pipelines to facilitate processing of large sample numbers and improved quality-control to ensure outputs remain within acceptable tolerances. As in other areas of industry, this will likely involve application and extension of techniques from the fields of control theory and statistical process control. To date the quality-control and optimization of NGS experiments is under-studied.******To address these issues we developed SeqControl, a framework for evaluating NGS data quality. Across 53 human genomes SeqControl was nearly perfect in identifying low-quality experiments early, before they incurred significant costs. Our long-term goal is to create a robust quality-control system for NGS data. To reach that goal we have three aims, focused on the major gaps in the NGS data analysis.******First, we will create a global standard for optimizing NGS data analysis. We will create a well-understood "gold standard" dataset and release it to groups around the world in a "Challenge", with an public leaderboard to identify the best methods. We have already successfully used this approach for other problems, attracting hundreds of participants.******Our second objective will enhance the SeqControl statistical model. Our initial formulation employs supervised machine-learning. While successful, this approach does not incorporate non-numerical information (e.g. technician or protocol), require large training datasets and are computationally intense. We will create on-line machine learning techniques, where predictive models are continually updated based on new information.******Finally we will develop new ways to optimize and merge different analysis methods using the "wisdom of the crowds" -- the idea that a group of analysis methods are superior to any single method. We will exploit this in NGS analysis for the first time.******Rapidly declining costs are bringing NGS closer to routine commercial use. A robust statistical process-control framework is urgently needed to predict quality, optimize experimental design and rapidly identify low-quality data. We will create global standards to improve the quality and reliability of hundreds of millions of dollars worth of NGS studies in-progress in Canada and world-wide.
下一代DNA测序(NGS)允许快速(在几天内)和负担得起(不到10,000美元)对有机体的整个基因组进行测序。持续的技术进步正在减少时间和成本,很快这种方法将成为常规商业应用的可行方法。NGS使研究人员能够了解进化史,改进和优化农业实践,并更好地了解细胞的基本属性。在未来,富有创意的企业家将开发利用具有成本效益的NGS的聪明的新商业应用程序。*但今天,每个样本都需要动手分析。未来NGS的生产使用将需要自动化管道,以促进大样本数量的处理,并改进质量控制,以确保产量保持在可接受的容差范围内。与工业的其他领域一样,这可能涉及控制理论和统计过程控制领域的技术的应用和推广。到目前为止,NGS实验的质量控制和优化还没有得到充分的研究。*为了解决这些问题,我们开发了一个评估NGS数据质量的框架--SeqControl。在53个人类基因组中,SeqControl在早期识别低质量实验方面近乎完美,在它们招致巨大成本之前。我们的长期目标是为NGS数据创建一个强大的质量控制系统。为了实现这一目标,我们有三个目标,重点是NGS数据分析中的主要差距。*首先,我们将创建优化NGS数据分析的全球标准。我们将创建一个广为人知的“黄金标准”数据集,并在“挑战赛”中将其发布给世界各地的组织,并建立一个公共排行榜,以确定最佳方法。我们已经成功地将这种方法用于其他问题,吸引了数百名参与者。*我们的第二个目标是增强SeqControl统计模型。我们最初的方案采用了有监督的机器学习。虽然成功,但这种方法没有纳入非数字信息(例如技术人员或协议),需要大量的训练数据集,并且计算密集型。我们将创建在线机器学习技术,其中预测模型将根据新信息不断更新。*最后,我们将开发新的方法来优化和合并不同的分析方法,使用“群体智慧”--一组分析方法优于任何单一方法的想法。我们将首次在NGS分析中利用这一点。*快速下降的成本正在使NGS更接近常规的商业用途。迫切需要一个强大的统计过程控制框架来预测质量、优化实验设计和快速识别低质量数据。我们将制定全球标准,以提高加拿大和世界各地正在进行的价值数亿美元的NGS研究的质量和可靠性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Boutros, PaulC其他文献
Boutros, PaulC的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Boutros, PaulC', 18)}}的其他基金
Quality-Control of Next-Generation Sequencing Data
下一代测序数据的质量控制
- 批准号:
RGPIN-2016-05541 - 财政年份:2017
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Quality-Control of Next-Generation Sequencing Data
下一代测序数据的质量控制
- 批准号:
RGPIN-2016-05541 - 财政年份:2016
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Process- and Quality-Control For Next-Generation Sequencing Studies
下一代测序研究的过程和质量控制
- 批准号:
RGPIN-2015-04123 - 财政年份:2015
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Cortical control of internal state in the insular cortex-claustrum region
- 批准号:
- 批准年份:2020
- 资助金额:25 万元
- 项目类别:
相似海外基金
PixelCam and HoloCam: Automated Quality Control for High Volume Holographic Optical Element Manufacture. Enabling the Next Generation of Automotive Head-up Displays.
PixelCam 和 HoloCam:大批量全息光学元件制造的自动化质量控制。
- 批准号:
10029924 - 财政年份:2022
- 资助金额:
$ 3.93万 - 项目类别:
Collaborative R&D
Quality-Control of Next-Generation Sequencing Data
下一代测序数据的质量控制
- 批准号:
RGPIN-2016-05541 - 财政年份:2017
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Quality-Control of Next-Generation Sequencing Data
下一代测序数据的质量控制
- 批准号:
RGPIN-2016-05541 - 财政年份:2016
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Process- and Quality-Control For Next-Generation Sequencing Studies
下一代测序研究的过程和质量控制
- 批准号:
RGPIN-2015-04123 - 财政年份:2015
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Continuous Quality Control for Composites For the Next Generation Flexible Pipe (CQCC)
下一代柔性管复合材料的持续质量控制 (CQCC)
- 批准号:
100997 - 财政年份:2011
- 资助金额:
$ 3.93万 - 项目类别:
Collaborative R&D
Next generation protein production on cellular quality-control process
细胞质量控制过程中的下一代蛋白质生产
- 批准号:
23360371 - 财政年份:2011
- 资助金额:
$ 3.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Analysis of the molecular basis for mRNA dynamics in the nucleus using next generation sequencer and the function for the factor(s)of quality control.
使用下一代测序仪分析细胞核中 mRNA 动态的分子基础以及质量控制因素的功能。
- 批准号:
23658289 - 财政年份:2011
- 资助金额:
$ 3.93万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Development of CAD for Control Systems Based on High Quality Numerical Computation in Next Generation
基于下一代高质量数值计算的控制系统CAD的开发
- 批准号:
21560467 - 财政年份:2009
- 资助金额:
$ 3.93万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ITR: Collaborative Research:Scalable Quality-of-Service Control for the Next Generation Internet: Fundamental Challenges and Effective Solutions
ITR:协作研究:下一代互联网的可扩展服务质量控制:基本挑战和有效解决方案
- 批准号:
0085848 - 财政年份:2000
- 资助金额:
$ 3.93万 - 项目类别:
Continuing Grant
ITR: Collaborative Rsearch: Scalable Quality-of-Service Control for the Next Generation Internet
ITR:协作研究:下一代互联网的可扩展服务质量控制
- 批准号:
0085824 - 财政年份:2000
- 资助金额:
$ 3.93万 - 项目类别:
Continuing Grant














{{item.name}}会员




