Representation theoretic methods in geometry and topology
几何和拓扑中的表示理论方法
基本信息
- 批准号:RGPIN-2014-04841
- 负责人:
- 金额:$ 2.04万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The common theme of this proposal is the use of representation theoretic methods (often inspired by ideas in categorification) to study*a) 3-manifold invariants (e.g. Reshetikhin-Turaev invariants),*b) categories arising in algebraic geometry (e.g. categories of coherent sheaves or D-modules on moduli spaces),*c) (categorified) quantum groups and vertex operator algebras.**One of the main tools in low dimensional topology are invariants which can distinguish between different 3-dimensional (or 4-dimensional) manifolds. A series of such invariant were introduced by Reshetikhin and Turaev. These Reshetikhin-Turaev (RT) invariants have deep connections to representation theory and, in particular, to quantum groups. In some ways, these connections are even more fundamental than the original relation to topology.**The simplest RT invariant for knots in the 3-sphere is called the Jones polynomial (since it was discovered earlier by Vaughan Jones). In 2001 Mikhail Khovanov showed that the Jones polynomial can be lifted to a more powerful homological invariant (now called Khovanov homology).**In subsequent work, jointly with Joel Kamnitzer, I showed that Khovanov homology can also be defined using categories of coherent sheaves on certain iterated Grassmannian bundles. These varieties can be defined using the affine Grassmannian which in turn is related (via geometric Satake) to the representation theory of semisimple Lie algebras. This is part of a sequence of ideas and results highlighting certain deep relations between algebraic geometry, representation theory and topology. **The main part of this proposal involves extending this story further. On the topology side one would like to lift the RT invariants to homological invariants of arbitrary 3-manifolds (not just knots in the 3-sphere). On the algebro-geometric side one would like to understand certain categories of coherent sheaves (and D-modules) on more complicated varieties appearing in geometric representation theory. This involves developing new techniques in representation theory of quantum groups as well as categorification (the study of their higher, homological analogues).**On the representation theoretic side one has the rich theory of vertex operators. These operators form one way to define the RT 3-manifold invariants. In earlier work with Anthony Licata, we showed how these operators can be categorified by relating them to categories of coherent sheaves on Hilbert schemes of points on surfaces (generalizing work of Nakajima and Grojnowski). I hope to continue this study of "categorified" vertex operators and their relation to geometry. One of the main aims is to use this to lift the RT invariants to homological invariants of all 3-manifolds.**The original introduction of vertex operator algebras by Borcherds and Frenkel-Lepowski-Meurman was for the purposes of proving the moonshine conjecture (which is a remarkable relationship between the largest sporadic finite group and the j-function from number theory). Subsequently, understanding the "higher" theory of vertex operators could also lead to a categorical version of moonshine theory.**To conclude, the aim of this proposal is to relate certain aspects from several fields: algebraic geometry, representation theory, 3-manifold invariants and categorification. There is a promising, rich and largely unexplored interplay between these areas along the lines sketched out above.
这个建议的共同主题是使用表示论方法(通常是受范畴化思想的启发)来研究*a)3-流形不变量(例如Reshetikhin-Turaev不变量),*b)代数几何中出现的范畴(例如模空间上的凝聚层或D-模),*c)(范畴化的)量子群和顶点算子代数。**低维拓扑学的主要工具之一是可以区分不同三维(或四维)流形的不变量。Reshetikhin和Turaev引入了一系列这样的不变量。这些Reshetikhin-Turaev(RT)不变量与表示论,特别是与量子群有很深的联系。在某些方面,这些联系甚至比原始的拓扑学关系更基本。**三维球面中纽结的最简单的RT不变量称为琼斯多项式(因为它是由沃恩·琼斯较早发现的)。在2001年,Mikhail Khovanov证明了Jones多项式可以提升到一个更强大的同调不变量(现在称为Khovanov同调)。**在随后的工作中,我与Joel Kamnitzer一起证明了Khovanov同调也可以用某些迭代Grassmanian丛上的凝聚层范畴来定义。这些簇可以用仿射Grassman来定义,而仿射Grassman又与半单李代数的表示理论有关(通过几何Satake)。这是一系列思想和结果的一部分,突出了代数几何、表示论和拓扑学之间的某些深层关系。**这项提案的主要部分涉及进一步延伸这一故事。在拓扑学方面,人们希望将RT不变量提升到任意3-流形(不仅仅是3-球面中的纽结)的同调不变量。在代数几何方面,人们想要了解几何表示理论中出现的更复杂簇上的某些凝聚层(和D-模)范畴。这涉及发展量子群表示理论以及范畴化(研究它们的更高、同调类似物)的新技术。**在表示理论方面,有丰富的顶点算子理论。这些算子形成了定义RT3-流形不变量的一种方法。在安东尼·利卡塔的早期工作中,我们展示了如何通过将这些算子与曲面上点的Hilbert方案上的相干层范畴相联系来分类(推广了Nakajima和Grojnowski的工作)。我希望继续研究“范畴化”的顶点运算符及其与几何的关系。主要目的之一是将RT不变量提升为所有三维流形的同调不变量。**Borcherds和Frenkel-Lepowski-Meurman最初引入顶点算子代数的目的是为了证明Moonlight猜想(这是最大的零星有限群与数论中的j-函数之间的一种显著关系)。随后,理解顶点算子的“更高”理论也可能导致月光理论的范畴版本。**总而言之,这一提议的目的是将几个领域的某些方面联系起来:代数几何、表示理论、3-流形不变量和范畴化。沿着上面勾勒出的路线,这些地区之间存在着一种充满希望、丰富且基本上未被探索的相互作用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cautis, Sabin其他文献
Curved Rickard complexes and link homologies
弯曲的里卡德复合物和链接同源性
- DOI:
10.1515/crelle-2019-0044 - 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Cautis, Sabin;Lauda, Aaron D.;Sussan, Joshua - 通讯作者:
Sussan, Joshua
W-ALGEBRAS FROM HEISENBERG CATEGORIES
海森堡范畴的 W 代数
- DOI:
10.1017/s1474748016000189 - 发表时间:
2016 - 期刊:
- 影响因子:0.9
- 作者:
Cautis, Sabin;Lauda, Aaron D.;Licata, Anthony M.;Sussan, Joshua - 通讯作者:
Sussan, Joshua
Cautis, Sabin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cautis, Sabin', 18)}}的其他基金
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Algebraic Geometry and Geometric Representation Theory
代数几何与几何表示论
- 批准号:
1000229452-2013 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Canada Research Chairs
Algebraic Geometry and Geometric Representation Theory
代数几何与几何表示论
- 批准号:
1000229452-2013 - 财政年份:2017
- 资助金额:
$ 2.04万 - 项目类别:
Canada Research Chairs
相似海外基金
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Sheaf-Theoretic Methods in Modular Representation Theory
模表示理论中的层理论方法
- 批准号:
2202012 - 财政年份:2022
- 资助金额:
$ 2.04万 - 项目类别:
Standard Grant
Geometric and category theoretic methods in representation theory
表示论中的几何和范畴论方法
- 批准号:
RGPIN-2017-03854 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2021
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Combinatorial and Representation Theoretic Methods in Number Theory
数论中的组合和表示论方法
- 批准号:
DE200101802 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Early Career Researcher Award
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Geometric and category theoretic methods in representation theory
表示论中的几何和范畴论方法
- 批准号:
RGPIN-2017-03854 - 财政年份:2020
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Representation theoretic methods in geometry and mathematical physics
几何和数学物理中的表示理论方法
- 批准号:
RGPIN-2019-03961 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Geometric and category theoretic methods in representation theory
表示论中的几何和范畴论方法
- 批准号:
RGPIN-2017-03854 - 财政年份:2019
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual
Geometric and category theoretic methods in representation theory
表示论中的几何和范畴论方法
- 批准号:
RGPIN-2017-03854 - 财政年份:2018
- 资助金额:
$ 2.04万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




