Non-Rational Conformal Field Theory

非有理共形场论

基本信息

  • 批准号:
    RGPIN-2014-03602
  • 负责人:
  • 金额:
    $ 2.99万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Due to its infinite dimensional symmetry algebra, two-dimensional conformal field theory (CFT) provides a class of very accessible quantum field theories. Rational CFTs have proven to be extremely useful in mathematics, string theory and statistical physics. An important example being the monster moonshine relating finite simple groups, modular forms, infinite dimensional Lie algebras, conformal field theory and the bosonic string to each other. By now the modern belief is that the fundamental class of nice CFTs is much larger than only rational theories. Indeed, non-rational CFT also appears in all areas just mentioned and it connects very recent and modern developments. One example is the Mathieu moonshine connecting finite simple groups, super string theory, (mock) modular forms and geometry of K3 surfaces. Another example is percolation relating logarithmic CFT to Schramm Loewner Evolution. **Integer level WZW theories of Lie groups and their cosets provide the natural family of rational conformal field theory. Logarithmic CFTs are non-rational and they are far less explored than their rational cousins. The natural families of logarithmic theories I expect to be fractional admissible level WZW theories and their cosets. **It has been a long-standing open problem (since 1988) to understand fractional level WZW theories. Together with David Ridout a consistent and satisfactory description has recently been found for the case of the fractional level SL(2) WZW theory. This finally opens the door to study these CFTs in great detail, and surely new and interesting structures will be found. My goal is to explore fractional level WZW theories and their cosets, and the objectives towards this goal are:**1) Describe the symmetry super algebra of a general class of cosets of super group WZW theories. Establish isomorphisms between examples of these cosets and very different looking CFTs. I.e. CFTs that are characterized as joint kernel of screening charges inside a free theory and also quantum Hamiltonian reductions. **2) There are interesting modular-like objects appearing as characters of logarithmic CFTs. In the second objective I will consider examples of cosets of logarithmic CFTs. The task is to understand how to get coset characters (branching functions) from the parent theory as well as the inverse problem, that is using the branching functions to reconstruct characters of the parent theory. **3) The aim of the final objective is to understand the fractional super group WZW theories of OSP(1|2) and SL(2|1). Important steps will be finding all irreducible modules with bounded conformal dimension as well as using the ideas of objective two to reconstruct the WZW theory from its cosets. This objective contains many feasible problems with interesting outcome and I want to train highly qualified personal (HQP, i.e. graduate students and postdocs) in this area. Especially graduate students can gain valuable experience in logarithmic CFT as well as modularity and representation theory in working on this objective. **The first two objectives are outlined in detail in the proposal section, while the third one is described in the section on highly qualified personal. I also have ambitious long-term goals. Proving the Verlinde formula for a class of logarithmic CFTs would be spectacular. In the rational case, the general proof by Huang was given more than ten years after Falting's geometric proof in the WZW case. In other words, an important step towards a proof of the Verlinde formula for fractional level WZW theories is to understand their geometric interpretation. Here at the University of Alberta, there are with Terry Gannon and Emanuel Diaconescu colleagues with the ideal background to ask this question together.
二维共形场论(CFT)由于其无限维对称代数,提供了一类非常容易理解的量子场论。Rational cft已经被证明在数学、弦理论和统计物理中非常有用。一个重要的例子是将有限单群、模形式、无限维李代数、共形场论和玻色子弦相互联系起来的怪物月光。到目前为止,现代的信念是,良好的cft的基本类别要比理性理论大得多。事实上,非理性CFT也出现在刚才提到的所有领域,它将最近和现代的发展联系起来。其中一个例子是Mathieu moonshine,它连接了有限单群、超弦理论、(模拟)模形式和K3曲面的几何。另一个例子是将对数CFT与Schramm Loewner演化相关联的渗透。**李群及其余集的整数级WZW理论提供了有理共形场论的自然族。对数cft是非理性的,对它们的探索远远少于它们的理性表兄弟。对数理论的自然族我期望是分数容许水平WZW理论和它们的协集。**理解分数级WZW理论是一个长期存在的开放性问题(自1988年以来)。与David Ridout一起,最近发现了分数阶SL(2) WZW理论的一致和令人满意的描述。这终于为详细研究这些cft打开了大门,肯定会发现新的有趣的结构。我的目标是探索分数阶WZW理论及其协集,实现这一目标的目标是:**1)描述一类超群WZW理论的协集的对称超代数。在这些协集的示例和看起来非常不同的cft之间建立同构。也就是说,cft的特征是自由理论中筛选电荷的联合核,也是量子哈密顿约简。**2)有一些有趣的模样物体出现在对数cft的特征中。在第二个目标中,我将考虑对数cft的协集示例。任务是了解如何从父理论中得到辅集特征(分支函数)以及逆问题,即利用分支函数重构父理论的特征。**3)最终目标的目的是理解OSP(1|2)和SL(2|1)的分数超群WZW理论。重要的步骤将是找到所有具有有界共形维数的不可约模,以及利用目标二的思想从其协集重构WZW理论。这个目标包含了许多可行的问题和有趣的结果,我想在这个领域培养高素质的个人(HQP,即研究生和博士后)。特别是研究生可以在这个目标的工作中获得对数CFT以及模块化和表示理论的宝贵经验。**前两个目标在提案部分详细概述,而第三个目标在高素质人才部分描述。我也有雄心勃勃的长期目标。证明一类对数cft的Verlinde公式将是惊人的。在有理情况下,Huang的一般证明比Falting在WZW情况下的几何证明晚了十多年。换句话说,要证明分数阶WZW理论的Verlinde公式,重要的一步是理解它们的几何解释。在阿尔伯塔大学,特里·甘农和伊曼纽尔·迪亚内斯库的同事们有着理想的背景来共同提出这个问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Creutzig, Thomas其他文献

Higgs and Coulomb branches from vertex operator algebras
  • DOI:
    10.1007/jhep03(2019)066
  • 发表时间:
    2019-03-13
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Costello, Kevin;Creutzig, Thomas;Gaiotto, Davide
  • 通讯作者:
    Gaiotto, Davide

Creutzig, Thomas的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Creutzig, Thomas', 18)}}的其他基金

Vertex Algebras in Geometry and Physics
几何和物理中的顶点代数
  • 批准号:
    SAPIN-2020-00039
  • 财政年份:
    2022
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Vertex Algebras in Geometry and Physics
几何和物理中的顶点代数
  • 批准号:
    SAPIN-2020-00039
  • 财政年份:
    2021
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Vertex Algebras in Geometry and Physics
几何和物理中的顶点代数
  • 批准号:
    SAPIN-2020-00039
  • 财政年份:
    2020
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Subatomic Physics Envelope - Individual
Non-Rational Conformal Field Theory
非有理共形场论
  • 批准号:
    RGPIN-2014-03602
  • 财政年份:
    2019
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Non-Rational Conformal Field Theory
非有理共形场论
  • 批准号:
    RGPIN-2014-03602
  • 财政年份:
    2017
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Non-Rational Conformal Field Theory
非有理共形场论
  • 批准号:
    RGPIN-2014-03602
  • 财政年份:
    2016
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Non-Rational Conformal Field Theory
非有理共形场论
  • 批准号:
    RGPIN-2014-03602
  • 财政年份:
    2015
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual
Non-Rational Conformal Field Theory
非有理共形场论
  • 批准号:
    RGPIN-2014-03602
  • 财政年份:
    2014
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于Rational Krylov法和小波域稀疏约束的时间域海洋电磁三维正反演研究
  • 批准号:
    41804098
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于Rational-Tensor(RTCam)摄像机模型的序列图像间几何框架研究
  • 批准号:
    61072105
  • 批准年份:
    2010
  • 资助金额:
    29.0 万元
  • 项目类别:
    面上项目

相似海外基金

Advances in rational operations in free analysis
自由分析中理性运算的进展
  • 批准号:
    2348720
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Standard Grant
CAREER: Rational Design of Dual-Functional Photocatalysts for Synthetic Reactions: Controlling Photosensitization and Reaction with a Single Nanocrystal
职业:用于合成反应的双功能光催化剂的合理设计:用单个纳米晶体控制光敏化和反应
  • 批准号:
    2339866
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Fellowship
Designing Rational Combinations to Improve CAR T Cell Therapy for Prostate Cancer
设计合理的组合以改善前列腺癌的 CAR T 细胞疗法
  • 批准号:
    10752046
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
Computability and the absolute Galois group of the rational numbers
可计算性和有理数的绝对伽罗瓦群
  • 批准号:
    2348891
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
Rational GAGA and Applications to Field Invariants
Rational GAGA 及其在场不变量中的应用
  • 批准号:
    2402367
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Continuing Grant
REVOLUPHON - Rational Evolutionary Phonology
REVOLUPHON - 理性进化音韵学
  • 批准号:
    EP/Y02429X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Research Grant
Control of linear and nonlinear physical properties based on rational design
基于合理设计的线性和非线性物理特性的控制
  • 批准号:
    23K04688
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Rational Design of Heterogeneous Catalysts for Sustainable Applications
可持续应用多相催化剂的合理设计
  • 批准号:
    2900533
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Studentship
Rational Heterogeneity of Membrane Electrode Assemblies for Next-Generation Polymer Electrolyte Fuel Cells (HETEROMEA)
下一代聚合物电解质燃料电池膜电极组件的合理异质性(HETEROMEA)
  • 批准号:
    EP/X023656/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.99万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了