Linking microbiology to past, present, and future geochemical cycles (LINK)
将微生物学与过去、现在和未来的地球化学循环联系起来 (LINK)
基本信息
- 批准号:RGPIN-2014-04867
- 负责人:
- 金额:$ 2.11万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Microbes act as agents of global change through their role as catalysts in Earth's biogeochemical cycles. Biogeochemical cycles, in turn, regulate Earth surface conditions, driving biological evolution. Defining the nature of this relationship and its complex feedback network is one of the grand challenges in Earth and Biological Sciences and addresses fundamental humanistic questions. My research program will define relationships between microbial communities and earth surface chemistry, improving our capacity to decipher the past and model the future. Using process rate measurements and deep sequencing efforts, this proposal (LINK) will quantify microbial ecosystem services, providing direct information on how the metabolic capacity, diversity, and structure of microbial communities influences biogeochemical cycling. This will allow the definition of models based on the physiology of environmental communities as opposed to isolated lab cultures, leading to new capacity for forecasting environmental change and ecosystem management. LINK will create knowledge at the forefront of research on microbial ecology and environmental chemistry with direct relevance to the management of natural and engineered environments in Canada (e.g. fish corrals, wastewater treatment facilities, Oil sands, forested soils, Arctic tundra, and coastal waterways). *LINK will answer four research questions, as outlined below:*1: How does dissimilatory reduction of nitrate to ammonium (DNRA) influence the N cycle, and what are the physiological capabilities of the responsible organisms? The quantitative role of DNRA, a short circuit in the N-cycle limiting nitrogen transfer back to the atmosphere, is unknown and physiological information on DNRA is scarce. Research into DNRA has the potential for huge implications, for example, in the management of agricultural land and nitrogen contamination in waterways.*2: Could Green Sulfur Bacteria photosynthetically oxidizing iron drive environmental productivity on the early earth and the deposition of Banded Iron Formations, and what are the genetics behind this photoferrotrophy? For 3 billion years, the oceans contained lots of ferrous iron, but today these conditions are rare. We know little about how these ecosystems function and have scant ecological context for early biological evolution. I have isolated the first pelagic photoferrotroph, the primary producer in ferruginous ecosystems, from a ferruginous lake. Physiological and genetic studies of this isolate will yield new clues into the roles photoferrotrophic bacteria played in Earth's chemical and biological evolution.*3: What do Cr isotopes reveal about atmospheric and ocean chemistry through time? Chromium isotopes are emerging as a powerful paleoredox proxy. Mechanisms for Cr isotope fractionation remain poorly defined, and the record of Cr isotopes through time is sparse. Knowledge on Cr isotope fractionation will yield insight into the development of atmospheric and ocean chemistry, drivers of biological evolution.*4: What do Lake Towuti's sediments tell us about past climate, microbial evolution, and the ferruginous biosphere? The International Continental Scientific Drilling Program has selected ancient Lake Towuti, Indonesia as its top priority for reconstructing the evolutionary and climate history of the Indo-Pacific Zone. Tropical climate has a global influence, particularly in Canada, where El Niño events modulate temperature, precipitation, and sea ice cover in the Arctic. Ancient DNA preserved in Towuti's sediments records evolutionary patterns of ferruginous microbial communities, offering a window into long-term biogeochemical transformations in ferruginous settings, an invaluable analogue for ancient ferruginous rocks.
微生物通过在地球生物化学循环中发挥催化剂的作用,成为全球变化的推动者。反过来,生物地球化学循环调节地球表面条件,推动生物进化。定义这种关系的性质及其复杂的反馈网络是地球和生物科学的重大挑战之一,并解决了基本的人文问题。我的研究计划将确定微生物群落和地球表面化学之间的关系,提高我们破译过去和模拟未来的能力。使用过程速率测量和深度测序工作,该提案(LINK)将量化微生物生态系统服务,提供有关微生物群落的代谢能力,多样性和结构如何影响生物地球化学循环的直接信息。这将允许基于环境群落的生理学而不是孤立的实验室培养物来定义模型,从而产生预测环境变化和生态系统管理的新能力。LINK将在微生物生态学和环境化学研究的最前沿创造知识,这些知识与加拿大的自然和工程环境管理直接相关(例如鱼类珊瑚礁,废水处理设施,油砂,森林土壤,北极苔原和沿海水道)。*LINK将回答以下四个研究问题:*1:硝酸盐异化还原为铵(DNRA)如何影响氮循环,以及负责生物体的生理能力是什么?DNRA的定量作用,在氮循环限制氮转移回大气中的短路,是未知的,DNRA的生理信息是稀缺的。对DNRA的研究有可能产生巨大的影响,例如,在农业土地和水道中的氮污染管理方面。第二章:绿色硫细菌光合氧化铁能驱动早期地球的环境生产力和带状铁地层的沉积吗?这种光铁营养背后的遗传学是什么?30亿年来,海洋中含有大量的二价铁,但今天这种情况很少见。我们对这些生态系统如何运作知之甚少,也缺乏早期生物进化的生态背景。我已经分离出第一个远洋光养铁生物,在含铁生态系统的主要生产者,从含铁的湖泊。对这种分离物的生理和遗传研究将为光养铁细菌在地球化学和生物进化中所起的作用提供新的线索。3:铬同位素揭示了大气和海洋化学随时间的变化?铬同位素正在成为一个强大的古氧化还原代理。铬同位素分馏的机制仍然不明确,铬同位素随时间的记录是稀疏的。关于铬同位素分馏的知识将有助于深入了解大气和海洋化学的发展,生物进化的驱动力。图4:托乌蒂湖的沉积物告诉我们过去的气候、微生物进化和含铁生物圈的什么?国际大陆科学钻探计划选择了印度尼西亚的古托乌蒂湖作为重建印度太平洋地区演化和气候历史的首要任务。热带气候具有全球性影响,特别是在加拿大,厄尔尼诺事件调节北极的温度,降水和海冰覆盖。Towuti沉积物中保存的古代DNA记录了含铁微生物群落的进化模式,为含铁环境中的长期生物地球化学变化提供了一个窗口,这是古代含铁岩石的一个宝贵的类似物。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Crowe, Sean其他文献
Crowe, Sean的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Crowe, Sean', 18)}}的其他基金
Microbial Responses to Ocean Deoxygenation
微生物对海洋脱氧的反应
- 批准号:
RGPIN-2019-05532 - 财政年份:2022
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Microbial Responses to Ocean Deoxygenation
微生物对海洋脱氧的反应
- 批准号:
RGPIN-2019-05532 - 财政年份:2021
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Microbial Responses to Ocean Deoxygenation
微生物对海洋脱氧的反应
- 批准号:
RGPIN-2019-05532 - 财政年份:2020
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Microbial Responses to Ocean Deoxygenation
微生物对海洋脱氧的反应
- 批准号:
RGPIN-2019-05532 - 财政年份:2019
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Individual
Nitrogen biogeochemistry and chromium isotopes in Saanich Inlet
萨尼奇湾的氮生物地球化学和铬同位素
- 批准号:
515529-2018 - 财政年份:2018
- 资助金额:
$ 2.11万 - 项目类别:
Discovery Grants Program - Ship Time
相似海外基金
CAREER: The Microbiology of Climate Change Disasters: Microbiome-Contaminant Interactions After Wildland-Urban Interface Fires
职业:气候变化灾难的微生物学:荒地与城市界面火灾后微生物组与污染物的相互作用
- 批准号:
2341016 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Continuing Grant
REU Site: Microbiology of Low Oxygen Ecosystems (MLOxE) at Montana State
REU 站点:蒙大拿州低氧生态系统 (MLOxE) 微生物学
- 批准号:
2349117 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Standard Grant
CAREER: Systems Microbiology and InterdiscipLinary Education for Halting Environmental Antibiotic Resistance Transmission (SMILE HEART)
职业:阻止环境抗生素耐药性传播的系统微生物学和跨学科教育(SMILE HEART)
- 批准号:
2340818 - 财政年份:2024
- 资助金额:
$ 2.11万 - 项目类别:
Continuing Grant
Postbiotics cooperate to improve metabolic disease
后生元合作改善代谢疾病
- 批准号:
487708 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Operating Grants
Macrophage metabolism in diabetes and tuberculosis comorbidity
糖尿病和结核病合并症中的巨噬细胞代谢
- 批准号:
10645801 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Knowledgebase of Escherichia coli Genome and Metabolism
大肠杆菌基因组和代谢知识库
- 批准号:
10716050 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Multi-omic signatures of gut dysbiosis and cardiovascular comorbidities associated with HIV infection
与 HIV 感染相关的肠道菌群失调和心血管合并症的多组学特征
- 批准号:
10762411 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别:
Bacterial metabolism of catechol-O-methyltransferase inhibitors alters drug efficacy and toxicity
儿茶酚-O-甲基转移酶抑制剂的细菌代谢改变药物疗效和毒性
- 批准号:
10606184 - 财政年份:2023
- 资助金额:
$ 2.11万 - 项目类别: