Bayesian Methods for Latent Class Models
潜在类模型的贝叶斯方法
基本信息
- 批准号:RGPIN-2018-06193
- 负责人:
- 金额:$ 1.17万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
My research program is focused on the development of Bayesian methods for estimation of latent class models. These models are motivated by problems involving diagnostic tests for diseases or conditions for which no perfect test exists. This is the case for many common diseases e.g. pneumonia, tuberculosis in children, prostate cancer. The lack of a perfect test presents a methodological challenge to researchers interested in measuring the prevalence of the disease or in the evaluating diagnostic tests for the disease. The current proposal describes new methods for such studies that will be developed under three different themes: ******i) Methods for latent class analysis in the context of a single study: ***Under this theme, we will study methods for comparing competing latent class models, methods for estimating the incremental value of a new test and methods for determining the optimal sequence of tests to be used in practice.******ii) Methods for evaluating the sample size required for evaluating diagnostic tests: ***Under this theme, we will describe methods for designing a new study where the incremental value of a new test over an older test is the statistic of interest. We will also develop methods for designing studies where the outcome of interest is reliability rather than validity.******iii) Methods for modeling conditional dependence and measuring heterogeneity in latent class meta-analysis models: ***Under this theme, we will describe methods for modeling conditional dependence in the context of a meta-analysis and methods for reporting the between-study heterogeneity in a meta-analysis.******A Bayesian inferential framework will be used throughout. One particular advantage of this approach for the proposed research is that it can be used for estimation of the non-identifiable models that frequently arise when the number of observed, imperfect tests is small (less than three or four). In such cases, the observed data needs to be augmented with prior information on a subset of the unknown parameters (e.g. the sensitivity and specificity of a well established but imperfect diagnostic test). Further, the Bayesian approach is conceptually straightforward to apply to the complex models that will arise under the above themes. ******Implementation of the Bayesian methods will involve use of Monte Carlo Markov Chain methods. Traditionally, an important impediment in disseminating Bayesian methods has been the lack of software. Therefore, user-friendly software will be developed to accompany each of the proposed methods. Each theme will give rise to several sub-projects suitable for graduate students or post-doctoral fellows. The methods described here will also find application in other areas where mis-measured data arise.
我的研究项目重点是开发用于估计潜在类模型的贝叶斯方法。这些模型的动机是涉及对不存在完美测试的疾病或病症的诊断测试的问题。许多常见疾病都是如此,例如:肺炎、儿童结核病、前列腺癌。缺乏完美的测试对有兴趣测量该疾病的患病率或评估该疾病的诊断测试的研究人员提出了方法学上的挑战。目前的提案描述了此类研究的新方法,这些方法将在三个不同的主题下开发: ******i) 在单一研究的背景下进行潜在类别分析的方法:***在这个主题下,我们将研究比较竞争潜在类别模型的方法、估计新测试增量值的方法以及确定实践中使用的最佳测试序列的方法。********ii) 评估评估所需样本量的方法 诊断测试:***在这个主题下,我们将描述设计一项新研究的方法,其中新测试相对于旧测试的增量值是感兴趣的统计量。我们还将开发设计研究的方法,其中感兴趣的结果是可靠性而不是有效性。******iii) 在潜在类别荟萃分析模型中建模条件依赖性和测量异质性的方法:***在此主题下,我们将描述在荟萃分析背景下建模条件依赖性的方法以及在荟萃分析中报告研究间异质性的方法。 荟萃分析。*****贝叶斯推理框架将贯穿始终。这种方法对于所提出的研究的一个特殊优点是,它可以用于估计不可识别的模型,当观察到的、不完美的测试数量很少(少于三或四个)时,这种模型经常出现。在这种情况下,需要用有关未知参数子集的先验信息(例如,完善但不完善的诊断测试的敏感性和特异性)来增强观察到的数据。此外,贝叶斯方法在概念上很简单,可以直接应用于上述主题下出现的复杂模型。 ******贝叶斯方法的实现将涉及蒙特卡罗马尔可夫链方法的使用。传统上,传播贝叶斯方法的一个重要障碍是缺乏软件。因此,将开发用户友好的软件来配合所提出的每种方法。每个主题都会产生几个适合研究生或博士后的子项目。这里描述的方法也适用于出现错误测量数据的其他领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dendukuri, Nandini其他文献
A Conditional Approach to Measure Mortality Reductions Due to Cancer Screening
- DOI:
10.1111/insr.12088 - 发表时间:
2015-12-01 - 期刊:
- 影响因子:2
- 作者:
Liu, Zhihui (Amy);Hanley, James A.;Dendukuri, Nandini - 通讯作者:
Dendukuri, Nandini
Modeling conditional dependence between diagnostic tests: A multiple latent variable model
- DOI:
10.1002/sim.3470 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:2
- 作者:
Dendukuri, Nandini;Hadgu, Alula;Wang, Liangliang - 通讯作者:
Wang, Liangliang
Systematic review of the accuracy of antibody tests used to screen asymptomatic adults for hepatitis C infection.
- DOI:
10.9778/cmajo.20160084 - 发表时间:
2016-10-01 - 期刊:
- 影响因子:0
- 作者:
Cadieux, Genevieve;Campbell, Jennifer;Dendukuri, Nandini - 通讯作者:
Dendukuri, Nandini
Bayesian Meta-Analysis of the Accuracy of a Test for Tuberculous Pleuritis in the Absence of a Gold Standard Reference
- DOI:
10.1111/j.1541-0420.2012.01773.x - 发表时间:
2012-12-01 - 期刊:
- 影响因子:1.9
- 作者:
Dendukuri, Nandini;Schiller, Ian;Pai, Madhukar - 通讯作者:
Pai, Madhukar
Concerns about composite reference standards in diagnostic research
- DOI:
10.1136/bmj.j5779 - 发表时间:
2018-01-18 - 期刊:
- 影响因子:105.7
- 作者:
Dendukuri, Nandini;Schiller, Ian;van Smeden, Maarten - 通讯作者:
van Smeden, Maarten
Dendukuri, Nandini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dendukuri, Nandini', 18)}}的其他基金
Bayesian Methods for Latent Class Models
潜在类模型的贝叶斯方法
- 批准号:
RGPIN-2019-06713 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Bayesian Methods for Latent Class Models
潜在类模型的贝叶斯方法
- 批准号:
RGPIN-2019-06713 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Bayesian Methods for Latent Class Models
潜在类模型的贝叶斯方法
- 批准号:
RGPIN-2019-06713 - 财政年份:2020
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Bayesian Methods for Latent Class Models
潜在类模型的贝叶斯方法
- 批准号:
RGPIN-2019-06713 - 财政年份:2019
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Bayesian Methods for Epidemiologic Studies
流行病学研究的贝叶斯方法
- 批准号:
238593-2013 - 财政年份:2017
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Bayesian Methods for Epidemiologic Studies
流行病学研究的贝叶斯方法
- 批准号:
238593-2013 - 财政年份:2015
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Bayesian Methods for Epidemiologic Studies
流行病学研究的贝叶斯方法
- 批准号:
238593-2013 - 财政年份:2014
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Bayesian Methods for Epidemiologic Studies
流行病学研究的贝叶斯方法
- 批准号:
238593-2013 - 财政年份:2013
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Bayesian methods for diagnostic test studies
用于诊断测试研究的贝叶斯方法
- 批准号:
238593-2006 - 财政年份:2010
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Bayesian methods for diagnostic test studies
用于诊断测试研究的贝叶斯方法
- 批准号:
238593-2006 - 财政年份:2009
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Computational Methods for Analyzing Toponome Data
- 批准号:60601030
- 批准年份:2006
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Analysis of latent variables in deep learning and their compositional methods
深度学习中的潜变量分析及其构成方法
- 批准号:
23K11266 - 财政年份:2023
- 资助金额:
$ 1.17万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER TRAJECTORIES OF STEM DOCTORAL STUDENTS: AN EXPLORATORY STUDY OF LATENT GROUPS USING CULTURALLY RESPONSIVE MEASURES AND METHODS
STEM 博士生的职业轨迹:使用文化响应措施和方法对潜在群体进行探索性研究
- 批准号:
2226007 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Standard Grant
Bayesian Methods for Latent Class Models
潜在类模型的贝叶斯方法
- 批准号:
RGPIN-2019-06713 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Simulation-based Methods for Large Dynamic Latent Variable Models with Unobserved Heterogeneity
具有不可观测异质性的大动态潜变量模型的基于仿真的方法
- 批准号:
RGPIN-2020-04161 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
- 批准号:
RGPIN-2019-04800 - 财政年份:2022
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
New Latent Variable Methods for selection of raw materials, process monitoring and product quality control
用于原材料选择、过程监控和产品质量控制的新潜变量方法
- 批准号:
RGPIN-2019-04800 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Resolving Spatiotemporal Determinants of Cell Specification in Corticogenesis with Latent Space Methods
用潜在空间方法解决皮质生成中细胞规格的时空决定因素
- 批准号:
10703714 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Simulation-based Methods for Large Dynamic Latent Variable Models with Unobserved Heterogeneity
具有不可观测异质性的大动态潜变量模型的基于仿真的方法
- 批准号:
RGPIN-2020-04161 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Discovery Grants Program - Individual
Resolving Spatiotemporal Determinants of Cell Specification in Corticogenesis with Latent Space Methods
用潜在空间方法解决皮质生成中细胞规格的时空决定因素
- 批准号:
10188106 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别:
Resolving Spatiotemporal Determinants of Cell Specification in Corticogenesis with Latent Space Methods
用潜在空间方法解决皮质生成中细胞规格的时空决定因素
- 批准号:
10378061 - 财政年份:2021
- 资助金额:
$ 1.17万 - 项目类别: