Materials for Electrochemical Energy Conversion: From Fundamental Physics to Advanced Design
电化学能量转换材料:从基础物理到先进设计
基本信息
- 批准号:RGPIN-2014-04074
- 负责人:
- 金额:$ 3.93万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This application supports a research program in "Electrochemical Materials for Energy Applications: From Fundamental Physics to Advanced Design". It explores the realms of theoretical chemical physics and electrochemical materials modeling. The long-term objective is to develop hierarchical approaches in materials modeling, outfitted with predictive capabilities for innovative design and diagnostics. The societal incentive is the global energy challenge. Ever-increasing energy demand, inefficient energy use, and fatal impacts of the fossil fuel-based energy economy on environment and climate drive worldwide efforts in energy research. The sublime versatility of electrochemical materials and devices as well as their unmatched thermodynamic efficiency and reduced environmental impact, famously noted by Ostwald in 1894, spur the development of electrochemical technologies. Soft protonic materials and porous electrodes are generic components of such technologies. We pursue profound research programs in both areas, encompassing phenomena from atomistic scale to the macroscopic device level. **This proposal focuses on theory and modeling of proton-conducting polymer electrolyte membranes. It strives to develop a deep theoretical understanding of how structure and composition of these materials dictate their physicochemical properties and operation. The foremost objective of electrolyte research is to develop highly transport-selective materials that facilitate proton transport and suppress the transport of all other species, including electrons, solvent molecules and reactant gases. Critical scientific challenges in view of this objective are to elucidate structural and dynamic effects of solvent, charge-bearing surface groups of the ionomer, and porous host material on proton transport. The main directions in theoretical membrane research that we will pursue involve a theory of ionomer bundle formation and bundle elasticity; a theory of water sorption and invasion; a theory of bundle breakage and fracture formation; and studies of proton motion at acid-functionalized interfaces using molecular modeling and soliton theory. **This program will help explaining the properties of membranes with different chemical architecture and composition. Results will guide efforts in the assembly of novel hierarchically structured materials. Moreover, our insights will be of value for important classes of phenomena and materials beyond polymer electrolyte membranes, to name a few: structure formation, water invasion and fracture formation in elastic porous media; proton transport at polyelectrolyte brushes, biomembranes, and lipid monolayers. On all of these aspects, we will interact closely with experimental groups in order to systematically scrutinize theoretical findings and explore their practical utility. **As a long-term perspective, our comprehensive programs in electrolyte and electrode research will furnish the theoretical framework for the design and integration of nanoprotonic materials and devices. The viability of future energy technologies and infrastructures hinges on the success of sustained efforts in fundamental materials science. The interdisciplinary outreach of this program and its exceptional bandwidth of theoretical and computational research in physics and chemistry, offer excellent learning and career perspectives for students. Students will gain a firm grasp of modern directions in materials science, requirements on electrochemical systems, and modern experimental techniques. In the realm of their own research, they will have opportunities to learn, develop, and apply a suite of modern methods in theoretical chemical physics and computational materials science.
该应用程序支持“能源应用的电化学材料:从基础物理到先进设计”的研究计划。它探索理论化学物理和电化学材料建模领域。长期目标是开发材料建模的分层方法,配备创新设计和诊断的预测能力。社会激励是全球能源挑战。不断增长的能源需求、低效的能源使用以及基于化石燃料的能源经济对环境和气候的致命影响推动了全球能源研究的努力。奥斯特瓦尔德 (Ostwald) 在 1894 年提出的著名观点是,电化学材料和器件的卓越多功能性以及无与伦比的热力学效率和减少的环境影响,推动了电化学技术的发展。软质子材料和多孔电极是此类技术的通用组件。我们在这两个领域都开展深入的研究项目,涵盖从原子尺度到宏观设备水平的现象。 **该提案重点关注质子传导聚合物电解质膜的理论和建模。它致力于对这些材料的结构和成分如何决定其物理化学性质和操作进行深入的理论理解。电解质研究的首要目标是开发高度传输选择性的材料,以促进质子传输并抑制所有其他物质(包括电子、溶剂分子和反应气体)的传输。鉴于此目标,关键的科学挑战是阐明溶剂、离聚物的带电荷表面基团和多孔主体材料对质子传输的结构和动态影响。我们将从事的理论膜研究的主要方向包括离聚物束形成和束弹性理论;水吸附和侵入理论;束断裂和断裂形成理论;以及使用分子建模和孤子理论研究酸功能化界面处的质子运动。 **该程序将有助于解释具有不同化学结构和成分的膜的特性。结果将指导新型分层结构材料的组装工作。此外,我们的见解对于聚合物电解质膜之外的重要现象和材料也具有价值,仅举几例:弹性多孔介质中的结构形成、水侵入和裂缝形成;聚电解质刷、生物膜和脂质单层的质子传输。在所有这些方面,我们将与实验小组密切互动,以系统地审视理论发现并探索其实际效用。 **从长远来看,我们在电解质和电极研究方面的综合项目将为纳米质子材料和器件的设计和集成提供理论框架。未来能源技术和基础设施的可行性取决于基础材料科学方面持续努力的成功。该项目的跨学科范围及其在物理和化学方面的理论和计算研究的卓越带宽,为学生提供了良好的学习和职业前景。学生将牢牢掌握材料科学的现代方向、电化学系统的要求和现代实验技术。在自己的研究领域,他们将有机会学习、开发和应用理论化学物理和计算材料科学的一套现代方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eikerling, Michael其他文献
pH Effects in a Model Electrocatalytic Reaction Disentangled.
- DOI:
10.1021/jacsau.2c00662 - 发表时间:
2023-04-24 - 期刊:
- 影响因子:8
- 作者:
Zhu, Xinwei;Huang, Jun;Eikerling, Michael - 通讯作者:
Eikerling, Michael
Tipping water balance and the Pt loading effect in polymer electrolyte fuel cells: a model-based analysis
- DOI:
10.1039/c8se00026c - 发表时间:
2018-06-01 - 期刊:
- 影响因子:5.6
- 作者:
Muzaffar, Tasleem;Kadyk, Thomas;Eikerling, Michael - 通讯作者:
Eikerling, Michael
Dynamic Response of Ion Transport in Nanoconfined Electrolytes.
- DOI:
10.1021/acs.nanolett.3c02560 - 发表时间:
2023-12-13 - 期刊:
- 影响因子:10.8
- 作者:
Zhang, Zengming;Li, Chenkun;Zhang, Jianbo;Eikerling, Michael;Huang, Jun - 通讯作者:
Huang, Jun
Electrokinetic Onsager coefficients and energy conversion in deformable nanofluidic channels
- DOI:
10.1140/epjst/e2019-800137-2 - 发表时间:
2019-04-01 - 期刊:
- 影响因子:2.8
- 作者:
Matse, Mpumelelo;Eikerling, Michael;Berg, Peter - 通讯作者:
Berg, Peter
Surface configuration and wettability of nickel(oxy)hydroxides: a first-principles investigation
- DOI:
10.1039/c7cp03396f - 发表时间:
2017-09-14 - 期刊:
- 影响因子:3.3
- 作者:
Eslamibidgoli, Mohammad Javad;Gross, Axel;Eikerling, Michael - 通讯作者:
Eikerling, Michael
Eikerling, Michael的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eikerling, Michael', 18)}}的其他基金
Lithium ion batteries for auxiliary power units in transportation systems: from physical modeling to optimal operation
运输系统辅助动力装置的锂离子电池:从物理建模到优化运行
- 批准号:
481280-2015 - 财政年份:2017
- 资助金额:
$ 3.93万 - 项目类别:
Collaborative Research and Development Grants
Materials for Electrochemical Energy Conversion: From Fundamental Physics to Advanced Design
电化学能量转换材料:从基础物理到先进设计
- 批准号:
RGPIN-2014-04074 - 财政年份:2017
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Modeling-based portrait and intelligent diagnostics of polymer electrolyte fuel cells
基于建模的聚合物电解质燃料电池画像与智能诊断
- 批准号:
513543-2017 - 财政年份:2017
- 资助金额:
$ 3.93万 - 项目类别:
Collaborative Research and Development Grants
Materials for Electrochemical Energy Conversion: From Fundamental Physics to Advanced Design
电化学能量转换材料:从基础物理到先进设计
- 批准号:
RGPIN-2014-04074 - 财政年份:2016
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Molecular modeling of catalyst layers in PEM fuel cells
PEM 燃料电池催化剂层的分子建模
- 批准号:
485759-2015 - 财政年份:2016
- 资助金额:
$ 3.93万 - 项目类别:
Collaborative Research and Development Grants
Data analytics and modeling of Volta Air's electric auxiliary power units
Volta Air 电力辅助动力装置的数据分析和建模
- 批准号:
506247-2016 - 财政年份:2016
- 资助金额:
$ 3.93万 - 项目类别:
Engage Grants Program
Molecular modeling of catalyst layers in PEM fuel cells
PEM 燃料电池催化剂层的分子建模
- 批准号:
485759-2015 - 财政年份:2015
- 资助金额:
$ 3.93万 - 项目类别:
Collaborative Research and Development Grants
Materials for Electrochemical Energy Conversion: From Fundamental Physics to Advanced Design
电化学能量转换材料:从基础物理到先进设计
- 批准号:
RGPIN-2014-04074 - 财政年份:2015
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Lithium ion batteries for auxiliary power units in transportation systems: from physical modeling to optimal operation
运输系统辅助动力装置的锂离子电池:从物理建模到优化运行
- 批准号:
481280-2015 - 财政年份:2015
- 资助金额:
$ 3.93万 - 项目类别:
Collaborative Research and Development Grants
Physical modeling of two-phase flow in porous gas-evolving electrodes
多孔气体逸出电极中两相流的物理模拟
- 批准号:
477500-2015 - 财政年份:2015
- 资助金额:
$ 3.93万 - 项目类别:
Engage Plus Grants Program
相似海外基金
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
- 批准号:
2344722 - 财政年份:2024
- 资助金额:
$ 3.93万 - 项目类别:
Standard Grant
Collaborative Research: Environmentally Sustainable Anode Materials for Electrochemical Energy Storage using Particulate Matter Waste from the Combustion of Fossil Fuels
合作研究:利用化石燃料燃烧产生的颗粒物废物进行电化学储能的环境可持续阳极材料
- 批准号:
2344723 - 财政年份:2024
- 资助金额:
$ 3.93万 - 项目类别:
Standard Grant
In-situ x-ray and electrochemical characterisation of energy materials
能源材料的原位 X 射线和电化学表征
- 批准号:
2889187 - 财政年份:2023
- 资助金额:
$ 3.93万 - 项目类别:
Studentship
Solid State Electrochemical Energy Storage Materials
固态电化学储能材料
- 批准号:
RGPIN-2020-05093 - 财政年份:2022
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Conference: CAS-Climate: Materials Chemistry in Electrochemical Energy Storage
会议:CAS-气候:电化学储能中的材料化学
- 批准号:
2232131 - 财政年份:2022
- 资助金额:
$ 3.93万 - 项目类别:
Standard Grant
New electrochemical materials breakthrough for energy applications
新型电化学材料在能源应用方面取得突破
- 批准号:
RGPIN-2019-07261 - 财政年份:2022
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Development/characterization of materials for electrochemical energy storage
电化学储能材料的开发/表征
- 批准号:
RGPIN-2018-04488 - 财政年份:2022
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
In situ methods and new materials for study of electrochemical energy storage processes
研究电化学储能过程的原位方法和新材料
- 批准号:
RGPIN-2019-07200 - 财政年份:2022
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Evaluating organic mixed-conductor materials for sustainable electrochemical energy storage
评估可持续电化学储能的有机混合导体材料
- 批准号:
2759202 - 财政年份:2022
- 资助金额:
$ 3.93万 - 项目类别:
Studentship
Materials for Electrochemical Energy Solutions
用于电化学能源解决方案的材料
- 批准号:
495455-2017 - 财政年份:2022
- 资助金额:
$ 3.93万 - 项目类别:
Collaborative Research and Training Experience