Scale-Coupling and Non-Locality in Large Random Fields

大随机场中的尺度耦合和非局部性

基本信息

  • 批准号:
    RGPIN-2015-05866
  • 负责人:
  • 金额:
    $ 2.19万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

There is an awful lot of image data being collected -- satellite pictures, microscopic images, Google Streetview -- how can we process all of this imagery? ***There are many image processing algorithms available for regular images, such as portraits from digital cameras. However for scientific imagery, such as satellite images of a forest, microscopic pictures of a cracks in concrete, or medical images of the body from an MRI, more specialized techniques of image processing are required.***To get as much information out of an image as possible, we need to take a mathematical model, such as the temperature of the earth's atmosphere or the expected topology of the brain, and then to combine the model with measured data. Such mathematical operations are tremendously valuable, for two reasons: *** First, because they allow us to infer subtle results from the data, and*** Second, because they allow us to test whether a given mathematical model makes sense or not, a crucial step in advancing our understanding.***The problem, however, is that it is very difficult to have a computer solve the equations underlying the models for large two- or three-dimensional problems. My research seeks to develop efficient alternatives to modeling and algorithms, currently focusing on two specific strategies:***1. Look at image modeling over a variety of scales, coupling a coarse-scale model looking at large objects with a fine-scale model looking at details and textures:***In other words, I research hierarchical approaches which break a problem into a number of layers or scales. Such an idea sounds very simple or intuitive, since the human visual system very much works this way, but is extremely challenging in practice, because most mathematical models do not allow themselves to be split up, and the extrapolation of model behaviour from one scale to another is not fully understood.*** 2. Allow the model to connect not just neighbouring pixels, but also pixels further apart:***This goal seems obvious, however virtually all spatial statistical models have focused on highly local interactions.  In my research I wish to explore models in which every pixel is connected to all other pixels, or possibly to a random scattered set of pixels based on the underlying image.  Such models are much more difficult to specify, but are able to represent image features and phenomena that local models cannot.***A significant impact of the research is on training of highly qualified graduate students, who will receive expertise in image processing and computer vision, at the same time with communication and leadership skills, and with interaction opportunities with industry.  To ensure that the research results become adopted, I collaborate with scientists in Physics and Optometry to develop instruments that can image the retina and the cornea, to improve eye health, and with scientists in Applied Health Sciences to improve ways of analyzing medical images and clinical data.**
我们收集了大量的图像数据--卫星图像,显微图像,谷歌街景--我们如何处理所有这些图像?* 有许多图像处理算法可用于常规图像,例如数码相机的肖像。然而,对于科学图像,例如森林的卫星图像,混凝土裂缝的显微照片,或来自MRI的身体的医学图像,需要更专业的图像处理技术。为了从图像中获得尽可能多的信息,我们需要建立数学模型,例如地球大气层的温度或大脑的预期拓扑结构,然后将模型与测量数据联合收割机结合起来。这样的数学运算非常有价值,原因有二:第一,因为它们允许我们从数据中推断出细微的结果;第二,因为它们允许我们检验给定的数学模型是否有意义,这是推进我们理解的关键一步。然而,问题是,对于大型二维或三维问题,很难让计算机求解模型所依据的方程。我的研究旨在开发建模和算法的有效替代方案,目前专注于两个具体策略:*1。查看各种尺度上的图像建模,将查看大对象的粗尺度模型与查看细节和纹理的细尺度模型耦合:* 换句话说,我研究分层方法,将问题分解为许多层或尺度。这种想法听起来非常简单或直观,因为人类视觉系统就是这样工作的,但在实践中极具挑战性,因为大多数数学模型不允许自己被分割,并且模型行为从一个尺度到另一个尺度的外推尚未完全理解。2.允许模型不仅连接相邻像素,还连接相距较远的像素:* 这个目标似乎很明显,但几乎所有空间统计模型都专注于高度局部的相互作用。 在我的研究中,我希望探索这样的模型,其中每个像素都与所有其他像素相连,或者可能与基于底层图像的随机分散的像素集相连。 这样的模型更难以指定,但能够表示局部模型无法表示的图像特征和现象。该研究的重大影响是对高素质研究生的培训,他们将获得图像处理和计算机视觉方面的专业知识,同时具有沟通和领导能力,并有机会与行业互动。 为了确保研究成果被采用,我与物理学和验光学的科学家合作开发可以成像视网膜和角膜的仪器,以改善眼睛健康,并与应用健康科学的科学家合作,以改善分析医学图像和临床数据的方法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fieguth, Paul其他文献

Constrained Watershed Method to Infer Morphology of Mammalian Cells in Microscopic Images
  • DOI:
    10.1002/cyto.a.20951
  • 发表时间:
    2010-12-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Kachouie, Nezamoddin N.;Fieguth, Paul;Khademhosseini, Ali
  • 通讯作者:
    Khademhosseini, Ali
Process performance evaluation and classification via in-situ melt pool monitoring in directed energy deposition
Extended local binary patterns for texture classification
  • DOI:
    10.1016/j.imavis.2012.01.001
  • 发表时间:
    2012-02-01
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    Liu, Li;Zhao, Lingjun;Fieguth, Paul
  • 通讯作者:
    Fieguth, Paul
Virtual histological staining of label-free total absorption photoacoustic remote sensing (TA-PARS).
  • DOI:
    10.1038/s41598-022-14042-y
  • 发表时间:
    2022-06-18
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Boktor, Marian;Ecclestone, Benjamin R.;Pekar, Vlad;Dinakaran, Deepak;Mackey, John R.;Fieguth, Paul;Haji Reza, Parsin
  • 通讯作者:
    Haji Reza, Parsin
Deep learning methods for inverse problems.
  • DOI:
    10.7717/peerj-cs.951
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Kamyab, Shima;Azimifar, Zohreh;Sabzi, Rasool;Fieguth, Paul
  • 通讯作者:
    Fieguth, Paul

Fieguth, Paul的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fieguth, Paul', 18)}}的其他基金

Resilience, Interpretability, and Scale in Large Complex Systems
大型复杂系统的弹性、可解释性和规模
  • 批准号:
    RGPIN-2020-04490
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Resilience, Interpretability, and Scale in Large Complex Systems
大型复杂系统的弹性、可解释性和规模
  • 批准号:
    RGPIN-2020-04490
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Unsupervised Machine Learning for Visual Relation Detection
用于视觉关系检测的无监督机器学习
  • 批准号:
    549003-2019
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Alliance Grants
Resilience, Interpretability, and Scale in Large Complex Systems
大型复杂系统的弹性、可解释性和规模
  • 批准号:
    RGPIN-2020-04490
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced Calibration for Multiple Projector Systems
多投影仪系统的高级校准
  • 批准号:
    531853-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Collaborative Research and Development Grants
Unsupervised Machine Learning for Visual Relation Detection
用于视觉关系检测的无监督机器学习
  • 批准号:
    549003-2019
  • 财政年份:
    2020
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Alliance Grants
Advanced Calibration for Multiple Projector Systems
多投影仪系统的高级校准
  • 批准号:
    531853-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Collaborative Research and Development Grants
Scale-Coupling and Non-Locality in Large Random Fields
大随机场中的尺度耦合和非局部性
  • 批准号:
    RGPIN-2015-05866
  • 财政年份:
    2019
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Advanced correction of projected imagery
投影图像的高级校正
  • 批准号:
    499828-2016
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Collaborative Research and Development Grants
Scale-Coupling and Non-Locality in Large Random Fields
大随机场中的尺度耦合和非局部性
  • 批准号:
    RGPIN-2015-05866
  • 财政年份:
    2017
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual

相似国自然基金

基于外泌体TRPV4-Nox4 coupling途径探讨缺氧微环境调控鼻咽癌转移侵袭和血管新生的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目

相似海外基金

Non-contact, high-resolution optical approach to assessing retinal neurovascular coupling in the healthy and glaucomatous retina
非接触式高分辨率光学方法评估健康和青光眼视网膜中的视网膜神经血管耦合
  • 批准号:
    487714
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Operating Grants
Development of Integrated Building Seismic Response Simulation Coupling Structural and Non-structural Components
结构与非结构构件耦合的集成建筑地震反应模拟开发
  • 批准号:
    23K19171
  • 财政年份:
    2023
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Coupling of Modified Equation of State and Percolation Theory to Study Static and Dynamic Non-Equilibrium Phase Behavior of Heavy Oil in the Presence of Porous Medium
修正状态方程与渗流理论耦合研究多孔介质中稠油静态和动态非平衡相行为
  • 批准号:
    RGPIN-2019-06103
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Magnetic sensors with non-collinear coupling
非共线耦合的磁传感器
  • 批准号:
    573715-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    University Undergraduate Student Research Awards
Optical method for in-vivo, non-invasive imaging of neurovascular coupling in the retina
用于视网膜神经血管耦合体内非侵入性成像的光学方法
  • 批准号:
    RGPIN-2020-06308
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
LEAPS-MPS: Investigation of topological spin texture and magnetoelectric coupling in non-centrosymmetric orthorhombic oxides
LEAPS-MPS:非中心对称正交氧化物中拓扑自旋织构和磁电耦合的研究
  • 批准号:
    2213443
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Standard Grant
Non-invasive measures of Neurovascular Coupling in humans
人体神经血管耦合的非侵入性测量
  • 批准号:
    RGPIN-2018-06599
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Cross-frequency coupling of brain oscillations during human non-rapid-eye-movement (NREM) sleep: implications for cognitive function and memory consolidation.
人类非快速眼动 (NREM) 睡眠期间大脑振荡的交叉频率耦合:对认知功能和记忆巩固的影响。
  • 批准号:
    RGPIN-2019-06990
  • 财政年份:
    2022
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Optical method for in-vivo, non-invasive imaging of neurovascular coupling in the retina
用于视网膜神经血管耦合体内非侵入性成像的光学方法
  • 批准号:
    RGPIN-2020-06308
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
Cross-frequency coupling of brain oscillations during human non-rapid-eye-movement (NREM) sleep: implications for cognitive function and memory consolidation.
人类非快速眼动 (NREM) 睡眠期间大脑振荡的交叉频率耦合:对认知功能和记忆巩固的影响。
  • 批准号:
    RGPIN-2019-06990
  • 财政年份:
    2021
  • 资助金额:
    $ 2.19万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了