Vector bundles and their role in number theory
向量丛及其在数论中的作用
基本信息
- 批准号:RGPIN-2017-06156
- 负责人:
- 金额:$ 1.02万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2018
- 资助国家:加拿大
- 起止时间:2018-01-01 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Number theory concerns the study of arithmetic properties of integers. It is a deep and beautiful theory that has surprising connections to many areas of mathematics and physics. This proposal concerns connections between the study of numbers and certain aspects of geometry. The particular connection that we pursue is via a type of function called a modular form. Modular forms appeared in mathematics over a century ago, and their import in number theory has grown considerably in the last fifty years, thanks in large part due to the so-called Langlands program and the stunning work of Andrew Wiles, which used modular forms to solve Fermat's last theorem.******Modular forms are functions (more precisely: sections of line bundles) on geometric spaces that are themselves of arithmetic interest. Part of the difficulty in studying modular forms using traditional methods lies in navigating the geometry of these beautiful but complicated spaces. A different approach is to cobble together several modular forms into a single vector valued function (more precisely: section of a vector bundle) that lives on a simpler space that looks like a sphere. That is, instead of thinking about simple functions on a complicated space, we think about complicated functions on a sphere. This approach allows us to introduce new geometric techniques (vector bundles and their moduli) into the study of modular forms. We are particularly interesting in continuing our exploration of how the theory of vector bundles informs the structure theory of modular forms.******This research is important to researchers in number theory, who are beginning to make important connections between the Langlands program and modern trends in geometry. A notable example is the recent proof of the so-called Fundamental lemma by Ngo Bao Chau, which earned Ngo a Fields medal in 2010, and which was called the seventh most important scientific discover of 2009 by Time magazine. A key step in the proof was to utilise the theory of Higgs bundles, which dates back to 1987 and which has been a driving force in geometry ever since. Since this fundamental work, a number of experts in the Langlands program have begun to unravel how Higgs bundles fit into their arithmetic work. They are making exciting progress, even though the field is still rather young. Higgs bundles are arising naturally in our work on modular forms, and so we are very excited by the prospect of using these powerful techniques to make progress in the field. Our research will expand this use of cutting edge geometry in the study of number theory. We hope that it will help popularise this area, that it will give number theorists powerful geometric tools, and that it will interest more geometers in the connections between their subject and number theory.
数论研究整数的算术性质。这是一个深刻而美丽的理论,与数学和物理的许多领域都有着惊人的联系。这一建议涉及研究数字和几何学某些方面之间的联系。我们所追求的特殊联系是通过一种称为模形式的函数。模形式在世纪前就出现在数学中,在过去的50年里,它们在数论中的重要性大大增加,这在很大程度上要归功于所谓的朗兰兹纲领和安德鲁·怀尔斯(Andrew Wiles)的惊人工作,他使用模形式解决了费马最后定理。模形式是几何空间上的函数(更确切地说:线丛的截面),它们本身是算术兴趣。使用传统方法研究模块化形式的部分困难在于导航这些美丽但复杂的空间的几何形状。一种不同的方法是将几个模形式拼凑成一个单一的向量值函数(更准确地说:向量丛的一部分),它存在于一个看起来像球体的更简单的空间中。也就是说,我们不再考虑复杂空间上的简单函数,而是考虑球面上的复杂函数。这种方法使我们能够引入新的几何技术(向量丛及其模)到模形式的研究。我们特别感兴趣的是继续探索向量丛理论如何影响模形式的结构理论。这项研究对数论研究者很重要,他们开始在朗兰兹纲领和现代几何学趋势之间建立重要的联系。一个值得注意的例子是Ngo Bao Chau最近对所谓的基本引理的证明,这为Ngo赢得了2010年的菲尔兹奖,并被时代杂志称为2009年第七大科学发现。证明的关键一步是利用希格斯束理论,该理论可以追溯到1987年,从那时起一直是几何学的驱动力。自从这项基础性的工作之后,朗兰兹计划的许多专家已经开始解开希格斯束如何适合他们的算术工作。他们正在取得令人兴奋的进展,尽管这个领域还相当年轻。希格斯束是在我们对模形式的研究中自然产生的,因此我们对使用这些强大的技术在该领域取得进展的前景感到非常兴奋。我们的研究将扩大这种使用的前沿几何学的研究数论。我们希望这将有助于普及这一领域,这将使数论强大的几何工具,它将有兴趣更多的几何学家之间的联系,他们的主题和数论。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Franc, Cameron其他文献
p-adic vertex operator algebras.
- DOI:
10.1007/s40993-023-00433-1 - 发表时间:
2023 - 期刊:
- 影响因子:0.8
- 作者:
Franc, Cameron;Mason, Geoffrey - 通讯作者:
Mason, Geoffrey
Character Vectors of Strongly Regular Vertex Operator Algebras
- DOI:
10.3842/sigma.2022.085 - 发表时间:
2022-01-01 - 期刊:
- 影响因子:0.9
- 作者:
Franc, Cameron;Mason, Geoffrey - 通讯作者:
Mason, Geoffrey
Franc, Cameron的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Franc, Cameron', 18)}}的其他基金
Vector bundles and their role in number theory
向量丛及其在数论中的作用
- 批准号:
RGPIN-2017-06156 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Vector bundles and their role in number theory
向量丛及其在数论中的作用
- 批准号:
RGPIN-2017-06156 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Vector bundles and their role in number theory
向量丛及其在数论中的作用
- 批准号:
RGPIN-2017-06156 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Vector bundles and their role in number theory
向量丛及其在数论中的作用
- 批准号:
RGPIN-2017-06156 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Vector bundles and their role in number theory
向量丛及其在数论中的作用
- 批准号:
RGPIN-2017-06156 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Efficient computation of p-adic Modularity
p-adic 模块化的高效计算
- 批准号:
332105-2008 - 财政年份:2009
- 资助金额:
$ 1.02万 - 项目类别:
Postgraduate Scholarships - Doctoral
Efficient computation of p-adic Modularity
p-adic 模块化的高效计算
- 批准号:
332105-2008 - 财政年份:2008
- 资助金额:
$ 1.02万 - 项目类别:
Postgraduate Scholarships - Doctoral
Hecke algebra's of modluar forms
赫克代数的模形式
- 批准号:
332105-2007 - 财政年份:2007
- 资助金额:
$ 1.02万 - 项目类别:
Postgraduate Scholarships - Master's
Hecke algebra's of modluar forms
赫克代数的模形式
- 批准号:
332105-2006 - 财政年份:2006
- 资助金额:
$ 1.02万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
相似国自然基金
系数在局部常层中的上同调理论及其到代数几何的应用
- 批准号:10471105
- 批准年份:2004
- 资助金额:17.0 万元
- 项目类别:面上项目
相似海外基金
Vector bundles and their role in number theory
向量丛及其在数论中的作用
- 批准号:
RGPIN-2017-06156 - 财政年份:2022
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Vector bundles and their role in number theory
向量丛及其在数论中的作用
- 批准号:
RGPIN-2017-06156 - 财政年份:2021
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Vector bundles and their role in number theory
向量丛及其在数论中的作用
- 批准号:
RGPIN-2017-06156 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Development of synthesis techniques to create a variety of compound nanosheet bundles and their applications to energy devices
开发合成技术以创建各种化合物纳米片束及其在能源设备中的应用
- 批准号:
20K04560 - 财政年份:2020
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
White Matter Bundles and their Relationship to Language Decline Following Anterior Temporal Lobe Resection
前颞叶切除后白质束及其与语言衰退的关系
- 批准号:
2371255 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Studentship
Investigation of the acoustic pressure pulsations in piping system and their effect on the dynamic response of CANDU fuel bundles
管道系统声压脉动及其对 CANDU 燃料棒束动态响应的影响研究
- 批准号:
488610-2015 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Collaborative Research and Development Grants
Vector bundles and their role in number theory
向量丛及其在数论中的作用
- 批准号:
RGPIN-2017-06156 - 财政年份:2019
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual
Development of highly hierarchical bundles comprising of collagen and proteoglycan and their in vivo evaluations
由胶原蛋白和蛋白聚糖组成的高度分层束的开发及其体内评估
- 批准号:
18K12092 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of the acoustic pressure pulsations in piping system and their effect on the dynamic response of CANDU fuel bundles
管道系统声压脉动及其对 CANDU 燃料棒束动态响应的影响研究
- 批准号:
488610-2015 - 财政年份:2018
- 资助金额:
$ 1.02万 - 项目类别:
Collaborative Research and Development Grants
Vector bundles and their role in number theory
向量丛及其在数论中的作用
- 批准号:
RGPIN-2017-06156 - 财政年份:2017
- 资助金额:
$ 1.02万 - 项目类别:
Discovery Grants Program - Individual