Improved Mathematical Programming Techniques for Approximation Algorithms

改进近似算法的数学编程技术

基本信息

  • 批准号:
    RGPIN-2015-06496
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

A striking number of problems in discrete optimization are, unfortunately, computationally intractable. These problems stem from issues faced by our complex society: coordinating vehicles in a transportation network, compiling code to create efficient executable programs, determining placements of fire or ambulance stations to improve response time. More precisely, many such problems are NP-hard meaning we do not have, nor do we expect, any efficient algorithms to solve these problems optimally. To cope with this difficulty, we focus on devising efficient algorithms that find near-optimum solutions.***The subject of this proposal is designing improved approximation algorithms for NP-hard optimization problems, primarily by devising and analyzing new mathematical programming approaches. The goal is to provide new polynomial-time algorithms to compute solutions whose costs are within some proven explicit bound of the optimum solution. The fact that these algorithms will be based on mathematical programs will also help articulate the connection between theoretical computing science and practical heuristics, as linear and integer programming techniques are often used to devise algorithms that perform well experimentally yet lack proven guarantees on their worst-case performance.***My proposed research includes modelling discrete optimization problems as mathematical programs and then relaxing some constraints of these programs to get models that can be solved efficiently. Typically, this is a linear or semidefinite programming relaxation of an integer program. Once this relaxation is solved, the solutions are carefully rounded in a way that obtains a feasible solution to the original model while preserving the objective function value as much as possible. This is already known to be one of the most effective ways to design approximation algorithms; eight chapters of the recent book "The Design of Approximation Algorithms" by Shmoys and Williamson are devoted to this method.***In particular, applications of mathematical programming techniques to vehicle routing and resource allocation problems will be investigated. In vehicle routing problems, a strong linear programming approach has recently proven useful in addressing problems with multiple vehicles and I propose to further explore these techniques to address fundamental routing problems. Additionally, I will investigate the so-called unsplittable flow problem in trees which represents the frontier of our understanding in how to approximate resource allocation and packing problems. In particular, I expect that understanding the effectiveness of a relatively new linear programming model should either lead to improved approximations or tighter lower bounds.********
不幸的是,离散优化中的大量问题在计算上是难以处理的。这些问题源于我们复杂社会所面临的问题:协调交通网络中的车辆,编译代码以创建有效的可执行程序,确定消防站或救护站的位置以提高响应时间。更确切地说,许多这样的问题是NP难的,这意味着我们没有,也不期望,任何有效的算法来最佳地解决这些问题。为了科普这个问题,我们专注于设计高效的算法,找到接近最优的解决方案。本提案的主题是设计改进的近似算法NP难优化问题,主要是通过设计和分析新的数学规划方法。我们的目标是提供新的多项式时间算法来计算解决方案,其成本是在一些证明明确的最佳解决方案的范围内。这些算法将基于数学程序的事实也将有助于阐明理论计算科学和实际计算学之间的联系,因为线性和整数规划技术通常用于设计实验性能良好但缺乏最坏情况性能保证的算法。我建议的研究包括建模离散优化问题的数学规划,然后放松这些程序的一些约束,以获得模型,可以有效地解决。通常,这是整数规划的线性或半定规划松弛。一旦这个松弛被解决,解决方案被仔细地四舍五入,以获得原始模型的可行解,同时尽可能地保留目标函数值。这已经被认为是设计近似算法的最有效的方法之一; Shmoys和威廉姆森最近出版的《近似算法的设计》一书中有八章专门讨论了这种方法。特别是,数学规划技术的车辆路径和资源分配问题的应用将进行调查。在车辆路径问题中,一个强大的线性规划方法最近被证明是有用的,在解决多辆车的问题,我建议进一步探索这些技术来解决基本的路径问题。此外,我将研究所谓的不可分割流问题的树木,这代表了我们的理解,在如何近似资源分配和包装问题的前沿。特别是,我希望理解一个相对较新的线性规划模型的有效性,应该会导致改进的近似或更严格的下限。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Friggstad, Zachary其他文献

Minimizing Movement in Mobile Facility Location Problems
  • DOI:
    10.1145/1978782.1978783
  • 发表时间:
    2011-07-01
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Friggstad, Zachary;Salavatipour, Mohammad R.
  • 通讯作者:
    Salavatipour, Mohammad R.

Friggstad, Zachary的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Friggstad, Zachary', 18)}}的其他基金

Approximation Algorithms for Clustering and Vehicle Routing
聚类和车辆路径的近似算法
  • 批准号:
    RGPIN-2020-04043
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for Clustering and Vehicle Routing
聚类和车辆路径的近似算法
  • 批准号:
    RGPAS-2020-00075
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Approximation Algorithms for Clustering and Vehicle Routing
聚类和车辆路径的近似算法
  • 批准号:
    RGPAS-2020-00075
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Approximation Algorithms for Clustering and Vehicle Routing
聚类和车辆路径的近似算法
  • 批准号:
    RGPIN-2020-04043
  • 财政年份:
    2021
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Approximation Algorithms for Clustering and Vehicle Routing
聚类和车辆路径的近似算法
  • 批准号:
    RGPAS-2020-00075
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Accelerator Supplements
Approximation Algorithms for Clustering and Vehicle Routing
聚类和车辆路径的近似算法
  • 批准号:
    RGPIN-2020-04043
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Canada Research Chair in Combinatorial Optimization
加拿大组合优化研究主席
  • 批准号:
    1000230198-2014
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Canada Research Chairs
Improved Mathematical Programming Techniques for Approximation Algorithms
改进近似算法的数学编程技术
  • 批准号:
    RGPIN-2015-06496
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Canada Research Chair in Combinatorial Optimization
加拿大组合优化研究主席
  • 批准号:
    1000230198-2014
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Canada Research Chairs
Improved Mathematical Programming Techniques for Approximation Algorithms
改进近似算法的数学编程技术
  • 批准号:
    RGPIN-2015-06496
  • 财政年份:
    2017
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual

相似海外基金

Study on Renewable Energy Integration with Mathematical Programming Model considering Electricity and Non-Electricity Sectors
考虑电力与非电力部门的可再生能源并网数学规划模型研究
  • 批准号:
    20H02679
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on combination of mathematical programming and evolutionary multi-point methods
数学规划与进化多点方法结合的研究
  • 批准号:
    20K11970
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Collaborative Partnership to Teach Mathematical Reasoning Through Computer Programming (CPR2)
合作研究:通过计算机编程教授数学推理的合作伙伴关系(CPR2)
  • 批准号:
    1933677
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Improved Mathematical Programming Techniques for Approximation Algorithms
改进近似算法的数学编程技术
  • 批准号:
    RGPIN-2015-06496
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: : Collaborative Partnership to Teach Mathematical Reasoning Through Computer Programming (CPR2)
合作研究::通过计算机编程教授数学推理的合作伙伴关系(CPR2)
  • 批准号:
    1933678
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Research on resource allocation method for service chaining based on approach of applied mathematical programming
基于应用数学规划方法的服务链资源分配方法研究
  • 批准号:
    19K14980
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
AI Planning and Mathematical Programming
人工智能规划与数学规划
  • 批准号:
    RGPIN-2015-05072
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
AF: Small: Faster and Better Algorithms for, and via, Mathematical Programming Relaxations
AF:小:更快更好的算法,并通过数学编程松弛
  • 批准号:
    1910149
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
Behavioural-based mathematical programming: algorithmics and applications
基于行为的数学规划:算法和应用
  • 批准号:
    RGPIN-2017-05073
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
AI Planning and Mathematical Programming
人工智能规划与数学规划
  • 批准号:
    RGPIN-2015-05072
  • 财政年份:
    2018
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了