Self-optimizing decoders for modern error-correcting codes that promote energy efficiency on the basis sufficient quality

现代纠错码的自优化解码器可在足够质量的基础上提高能源效率

基本信息

  • 批准号:
    RGPIN-2018-04284
  • 负责人:
  • 金额:
    $ 2.4万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2018
  • 资助国家:
    加拿大
  • 起止时间:
    2018-01-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Channel coding is an essential ingredient of all modern communication systems. Decoders of such codes are often one of the most computationally intensive and power hungry task in modern wireless receivers. One of the latest innovations in channel coding are polar codes, a type of codes that can provably achieve the capacity of all practically relevant channels. The widely-recognized disruptive impact of these codes is illustrated by the recent, rapid adoption of this class of codes as part of 3GPP's next-generation mobile-communication standard (5G). Despite the recent progress in the design of advanced decoding algorithms and corresponding decoders, compared to the achievements of 20+ research years in efficient decoder design for the competing low-density parity-check (LDPC) and turbo codes, polar decoders are still in their infancy, lagging behind in terms of area and energy efficiency.******An important and fundamental reason for the limited (area and energy) efficiency of today‘s polar decoders is deeply rooted in the nature of close-to-optimal decoding strategies. These advanced algorithms explore multiple hypotheses to maximize the chance for success (i.e., finding the correct codeword). Unfortunately, in order to always meet expectations on sampling rate, throughput, and latency, all of these hypotheses must typically be considered in parallel whereas the competing codes use iterative schemes. In practice, this leads to severe overhead, notably in terms of area and power consumption, which is unnecessary under the most frequent average operating conditions. Most of the resources are wasted on calculations for results that are, in the end, discarded.******The proposed research program focuses on the creation of novel algorithms and decoder implementations (software or hardware) for polar codes that are energy efficient while catering sufficient quality for the application. The broader objective is to demonstrate that not only we can live with the uncertainty of a variable runtime but that by doing so the energy efficiency is improved.
信道编码是所有现代通信系统的基本组成部分。这种码的解码器通常是现代无线接收机中计算最密集且最耗电的任务之一。信道编码的最新创新之一是极化码,这是一种可以证明实现所有实际相关信道容量的代码。这些代码的广泛认可的破坏性影响最近被3GPP的下一代移动通信标准(5G)快速采用。尽管最近在高级解码算法和相应解码器的设计方面取得了进展,但与20多年来在竞争低密度奇偶校验(LDPC)和Turbo码的高效解码器设计方面的成就相比,极化解码器仍处于起步阶段,在面积和能量效率方面落后。当今极化解码器的有限(面积和能量)效率的重要和根本原因深深地植根于接近最佳解码策略的性质。这些先进的算法探索多个假设,以最大限度地提高成功的机会(即,找到正确的码字)。不幸的是,为了始终满足对采样率、吞吐量和延迟的期望,所有这些假设通常必须并行考虑,而竞争代码使用迭代方案。在实践中,这导致严重的开销,特别是在面积和功耗方面,这在最频繁的平均操作条件下是不必要的。大多数资源都浪费在计算结果上,最终被丢弃。拟议的研究计划侧重于为极化码创建新的算法和解码器实现(软件或硬件),这些算法和解码器实现既节能又能满足应用的足够质量。更广泛的目标是证明我们不仅可以忍受可变运行时间的不确定性,而且通过这样做可以提高能源效率。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Giard, Pascal其他文献

Fast List Decoders for Polar Codes
Fast Polar Decoders: Algorithm and Implementation

Giard, Pascal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Giard, Pascal', 18)}}的其他基金

Self-optimizing decoders for modern error-correcting codes that promote energy efficiency on the basis sufficient quality
现代纠错码的自优化解码器可在足够质量的基础上提高能源效率
  • 批准号:
    RGPIN-2018-04284
  • 财政年份:
    2022
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Self-optimizing decoders for modern error-correcting codes that promote energy efficiency on the basis sufficient quality
现代纠错码的自优化解码器可在足够质量的基础上提高能源效率
  • 批准号:
    RGPIN-2018-04284
  • 财政年份:
    2021
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Self-optimizing decoders for modern error-correcting codes that promote energy efficiency on the basis sufficient quality
现代纠错码的自优化解码器可在足够质量的基础上提高能源效率
  • 批准号:
    RGPIN-2018-04284
  • 财政年份:
    2020
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Identification des variables d'influence et création d'un modèle prédictif restreint pour l'établissement du meilleur prix plancher pour de la publicité en ligne
识别影响力和创建模式预测限制的变量,以确保公共政策最佳奖计划的制定
  • 批准号:
    539606-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Engage Grants Program
Self-optimizing decoders for modern error-correcting codes that promote energy efficiency on the basis sufficient quality
现代纠错码的自优化解码器可在足够质量的基础上提高能源效率
  • 批准号:
    RGPIN-2018-04284
  • 财政年份:
    2019
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Grants Program - Individual
Self-optimizing decoders for modern error-correcting codes that promote energy efficiency on the basis sufficient quality
现代纠错码的自优化解码器可在足够质量的基础上提高能源效率
  • 批准号:
    DGECR-2018-00370
  • 财政年份:
    2018
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Discovery Launch Supplement

相似海外基金

SBIR Phase I: Optimizing Safety and Fuel Efficiency in Autonomous Rendezvous and Proximity Operations (RPO) of Uncooperative Objects
SBIR 第一阶段:优化不合作物体自主交会和邻近操作 (RPO) 的安全性和燃油效率
  • 批准号:
    2311379
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Optimizing Intelligent Vehicular Routing with Edge Computing through Multi-Agent Reinforcement Learning
通过多智能体强化学习利用边缘计算优化智能车辆路由
  • 批准号:
    24K14913
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Optimizing the STEM Teacher Recruitment, Development and Retention Pathway: Aligning STEM and Teaching Identities
优化 STEM 教师的招聘、发展和保留途径:协调 STEM 和教学身份
  • 批准号:
    2345197
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
I-Corps: Translation Potential of Optimizing Regression Testing in Software Development
I-Corps:软件开发中优化回归测试的转化潜力
  • 批准号:
    2405355
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
CAREER: Characterizing and Optimizing Control in Neural Interfaces
职业:表征和优化神经接口控制
  • 批准号:
    2338662
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
SBIR Phase I: Optimizing Composition of Novel Molten Alkali Metal Borates for Carbon Dioxide Capture
SBIR 第一阶段:优化用于二氧化碳捕获的新型熔融碱金属硼酸盐的成分
  • 批准号:
    2332658
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
SCC-PG: Internet of Waste: A Low-Cost Geospatial Sensor Network for Optimizing Solid Waste Management and Fostering Resident's Recycling Effectiveness Through Evidential Education
SCC-PG:废物互联网:通过循证教育优化固体废物管理并提高居民回收效率的低成本地理空间传感器网络
  • 批准号:
    2341996
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
Automated, Scalable, and Machine Learning-Driven Approach for Generating and Optimizing Scientific Application Codes
用于生成和优化科学应用代码的自动化、可扩展且机器学习驱动的方法
  • 批准号:
    23K24856
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
SCC-PG: Optimizing sociotechnical interventions for healthcare access using community sensing
SCC-PG:利用社区感知优化医疗保健获取的社会技术干预措施
  • 批准号:
    2334724
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Standard Grant
DMREF: Optimizing Problem formulation for prinTable refractory alloys via Integrated MAterials and processing co-design (OPTIMA)
DMREF:通过集成材料和加工协同设计 (OPTIMA) 优化可打印耐火合金的问题表述
  • 批准号:
    2323611
  • 财政年份:
    2024
  • 资助金额:
    $ 2.4万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了